840 likes | 878 Views
Dive into high-speed switching fabrics, twisted pair mediums, fiber optics, radio technology, Ethernet coax, logarithms, channel capacity, and more in computer networking. Learn about different network topologies, transmission mediums, and essential concepts to get started in LAN networking.
E N D
NETWORKS • Covering • High speed switching fabrics • Twisted pair • Mediums • Fiber optics • Radio • Ethernet Coax
NETWORKS • Logarithms • Channel capacity • Hartley-Shannon Law • Review of the Layers • Things you need to get started on a LAN
High Speed Switching Fabrics • Aside from the Bus topologies, there are many others, with higher throughput, like • ring • Transputer Topology • Torus Topology • Cray T3D
The Transputer Topology 4 way connectivity
The Torus Topology 4 way connectivity
Torus Topology 5 way connectivity
Cray T3D, Torus Topology 6 way connectivity
Twisted Pair • Typically a balanced digital line • 2 conductor insulated wire • Twisting the wire minimizes the electromagnetic interference • A primary medium for voice traffic • used as serial cable to hookup networks
Twisted Pair • The repeat coil (transformer) or Op-Amp can be used
Twisted Pair • In telephone modem terms this is known as a DAA (Data Access Arrangement).
Mediums • UTP (unshielded twisted pair) • typical voice line • Generally good for star LAN short haul 10 Mbps • STP (shielded twisted pair) • level 5 data grade (100 Mbps) • RS-422 • balanced serial data communications • RS-232 • unbalanced serial data communications
Mediums • Coax • CATV (community antenna TV) • telephone long line via FDM carries 10,000 voices • LAN-WAN • cable TV
Mediums • Fiber Optics • use total internal reflection • This occurs in a transparent medium whose index of refraction is higher that surrounding medium • optic fiber is a wave guide in the 10 raised 14 to 10 raised 15 hz range
Fiber Optics • multimode • different rays have different path lengths, loss occurs • multimode-graded index • variable core index, focuses rays more efficiently that multimode • single mode • only the axial ray passes, most efficient.
Fiber Optics • LED (light emmiting diode) • inexpensive • ILD (injection laser diode ) • more expensive (more efficient and higher bandwidth that LED). • Detectors • Photo Diodes
Fiber Optics • light propagates best at 850, 1300 and 1500 nm • 640 nm = wavelength of HE-NE red = .64 micro meters • ultra pure fused silica is best, plastic is cheapest and worst
Fiber Optics • bandwidth - 2 Gbps (typical) • smaller size and weight than copper • lower attenuation than coax • electromagnetically isolated • greater repeater spacing, 5 Gbs over 111 km w/o repeater • phasing out cable.
Radio • Microwave • line-of-sight • parabolic dish
Ethernet Coax • For Ethernet coax • ASIC’s which give a digital interface to a bus topology LAN • For example, the Crystal Semiconductor Corporation CS83C92 is a Coaxial Transceiver Interface on a chip
Ethernet Coax • CS83C92 • Balanced serial inputs • Uses Manchester codes • All operations with IEEE 802.3 of the 10Base5 (Ethernet) and 10Base2 (Cheapernet) standard
Ethernet Coax • CS83C92 have • equalizers • amplifiers • idle detectors, receiver squelch circuits • collision testers • oscillators • differential line drivers • (with other stuff too!!!) • A manchester code convert chip is also needed
Logarithms • Log Review
Logarithms • For example
Logarithms • Laws of Logarithms
Intermodulation noise • results when signals at different frequencies share the same transmission medium
cause • transmitter, receiver of intervening transmission system nonlinearity
Crosstalk • an unwanted coupling between signal paths. i.e hearing another conversation on the phone • Cause • electrical coupling
Impluse noise • spikes, irregular pulses • Cause • lightning can severely alter data
Channel Capacity • Channel Capacity • transmission data rate of a channel (bps) • Bandwidth • bandwidth of the transmitted signal (Hz) • Noise • average noise over the channel • Error rate • symbol alteration rate. i.e. 1-> 0
Channel Capacity • if channel is noise free and of bandwidth W, then maximum rate of signal transmission is 2W • This is due to intersymbol interface
Channel Capacity • Example w=3100 Hz C=capacity of the channel c=2W=6200 bps (for binary transmission) m = # of discrete symbols
Channel Capacity • doubling bandwidth doubles the data rate if m=8
Channel Capacity • doubling the number of bits per symbol also doubles the data rate (assuming an error free channel) (S/N):-signal to noise ratio
Hartley-Shannon Law • Due to information theory developed by C.E. Shannon (1948) C:- max channel capacity in bits/second w:= channel bandwidth in Hz
Hartley-Shannon Law • Example W=3,100 Hz for voice grade telco lines S/N = 30 dB (typically) 30 dB =
Hartley-Shannon Law • Represents the theoretical maximum that can be achieved • They assume that we have AWGN on a channel
Hartley-Shannon Law C/W = efficiency of channel utilization bps/Hz Let R= bit rate of transmission 1 watt = 1 J / sec =enengy per bit in a signal
Hartley-Shannon Law S = signal power (watts)
Hartley-Shannon Law k=boltzman’s constant
Hartley-Shannon Law assuming R=W=bandwidth in Hz In Decibel Notation:
Hartley-Shannon Law S=signal power R= transmission rate and -10logk=228.6 So, bit rate error (BER) for digital data is a decreasing function of For a given , S must increase if R increases
Hartley-Shannon Law • Example For binary phase-shift keying =8.4 dB is needed for a bit error rate of let T= k = noise temperature = C, R=2400 bps &
Hartley-Shannon Law • Find S S=-161.8 dbw
ADC’s • typically are related at a convention rate, the number of bits (n) and an accuracy (+- flsb) • for example • an 8 bit adc may be related to +- 1/2 lsb • In general an n bit ADC is related to +- 1/2 lsb
ADC’s • The SNR in (dB) is therefore where about