Create Presentation
Download Presentation

Download

Download Presentation

Characterization of the Earth’s Surface and Atmosphere from Thermal Imagery

110 Views
Download Presentation

Download Presentation
## Characterization of the Earth’s Surface and Atmosphere from Thermal Imagery

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -

**Characterization of the Earth’s Surface and Atmosphere**from Thermal Imagery Erich Hernandez-Baquero, Capt., USAF Ph.D. Dissertation Defense Advisor: Dr. John R. Schott 1 June 2000 Chester F. Carlson Center for Imaging Science Rochester Institute of Technology**Overview**• Introduction • Approach • Experimental Results • Conclusions • Questions & Discussion**Global Climate and Change**• 1997-1998 El Niño • Record-setting • 2100 deaths • $33+ billion (U.S.D.) property damage • Global warming • Ozone depletion**The Problem**• Target emission • Temperature • Emissivity • Atmospheric emission • Temperature profiles • Constituent concentration • Sensor • Spatial resolution • Spectral response • Detector thermal noise Challenge: infer information about the atmosphere and the surface directly from the hyperspectral cube Sensor: Atmosphere: Temperature Emissivity Target:**H2O**CO2 O3 H2O H2O CO2 Thermal Spectrum**• Transmission**• Upwelled radiance • Downwelled radiance Observed radiance Radiative Transfer Model Inputs • Atmospheric profiles • Weather conditions • Molecular spectroscopy • Surface temperature and emissivity Atmospheric Model Outputs**x1**y1 y2 x2 r1 v1 u1 y3 x3 r2 v2 u2 . . . . . . . . . rr ur vr xp yq CCA Path Diagram weights weights . . . loadings loadings**CCA (Cont.)**The linear combinations are obtained from: Where e and f are the eigenvectors from: And r2 are the eigenvalues, which are the maximized correlations.**4**2 U 0 2 2 0 2 4 V CCA (cont.) Canonical Correlations in a Nutshell: • Linear combination maximizes correlation between U and V • U and V have unit variance • Several U-V pairs may be found with decreasing correlations • Linear combinations are orthogonal • No distinction between predictor and response variables n observations**CCA Example: Linnerud data**Chins Situps Weight Waist Height Jumps**CCA Example**Weight Chins Situps Waist Jumps Pulse**CCA Example**chins & situps r jumps large waist low weight**CCA Implementation**Canonical Variables MODTRAN CCA OR Radiosonde Correlations**Test & Verification**MODTRAN Runs MODTRAN Inverse Model Radiosonde TES Ground Truth**CCA Implementation**Canonical Variables MODTRAN CCA OR Radiosonde Correlations**Lake Mead, NV**Date: 02 Dec 1998 Time: 1953 Zulu Altitude: 6.0 km Flight: 99-001-01F**Cold Springs, NV**Date: 29 Sep 1999 Time: 1847 Zulu Altitude: 10.0 km Flight: 99-006-14F**CCA Implementation**Canonical Variables MODTRAN CCA OR Radiosonde Correlations**CCA Implementation**Canonical Variables MODTRAN CCA OR Radiosonde Correlations**Railroad Valley Playa Emissivity**Date: 29 Sep 1999 Time: 1757 Zulu Altitude: 10.0 km Flight: 99-006-14B**Varying Emissivity Results**RMS Surface Temperature Errors (oK) Simulated MASTER Simulated MASTER (L. Mead & C. Springs) SEBASS Test Case TES Direct TES Direct TES Direct Lake Mead FSL 2.81 1.13 0.81 1.87 2.50 0.60 NAST-I 2.51 1.19 0.65 1.75 2.33 0.53 SSEC 2.68 1.99 0.99 2.70 - 1.24 White River Valley FSL 2.83 1.45 0.69 3.50 2.28 0.47 NAST-I 2.30 1.91 0.61 1.95 2.11 0.55 SSEC 3.60 2.59 1.40 2.05 - 1.23**Parameter**PCR CCR MR PLS Ts RMS (oC) 1.85 0.51 0.54 0.75 Temp. profile RMS (oC) 1.84 1.80 1.79 1.80 CWV RMS (mm) 4.38 4.22 4.21 4.21 Other Multivariate Methods Comparison using MWIR medium resolution (201 bands) Results obtained with 5 dimensions only**Parameter**PCR CCR MR PLS Ts RMS (oC) 3.11 0.80 0.80 0.80 Temp. profile RMS (oC) 2.06 1.99 1.99 1.96 CWV RMS (mm) 5.11 4.96 4.95 4.94 Other Multivariate Methods Comparison using MWIR-selected (5) bands Results obtained with 3 bands only**Conclusions**• CCR provides accurate and robust inverse model • CCA exploits relevant information in radiance spectra about parameters of interest • Model built on a rank-reduced latent space • Prevents data “overfitting” • Orthogonal linear combinations minimize redundancy • Based on radiative transfer physics • Works well with observations outside of model dataset**Conclusions**• Other applications • Change detection • Analysis of hyperspectral difference images • Least correlated areas have the most change • Does not require same number of bands in both images • Compression • Only canonical data needs to be transmitted • Reduces bandwidth requirements • Sensor spectral design tool • Provides least number of bands required • Identifies optimal placement of bands**Conclusions**• Recommendations • Explore optimal design of inverse model • Synthetic vs. real vertical profile inputs • Local vs. global coverage • Study effects of sensor noise • Use direct temperature retrievals to scale TES emissivity estimate • Test against targets of interest • Explore nonlinear inverse model • Explore independent component analysis**Acknowledgements**• U.S. Air Force • Comrades in arms (U.S. AND Canadian) • Students, staff, and faculty AND TO MY LOVING WIFE AND CHILDREN**Questions & Discussion**http://www.cis.rit.edu/~edh7623