660 likes | 934 Views
Progettazione di circuiti e sistemi VLSI. Anno Accademico 2010-2011 Lezione 11 5.5.11 Memorie ( vedi anche i file pcs1_memorie.pdf pcs2_memorie.pdf – pcs3_memorie.pdf ). Chapter Overview. Memory Classification. Memory Architectures. The Memory Core. Periphery. Reliability
E N D
Progettazione di circuiti e sistemi VLSI Anno Accademico 2010-2011 Lezione 11 5.5.11 Memorie (vedi anche i file pcs1_memorie.pdf pcs2_memorie.pdf – pcs3_memorie.pdf ) Sistemi Elettronici Programmabili
Chapter Overview • Memory Classification • Memory Architectures • The Memory Core • Periphery • Reliability • Case Studies Sistemi Elettronici Programmabili
Semiconductor Memory Classification Non-Volatile Read-WriteMemory Read-Write Memory Read-Only Memory Random Non-Random EPROM Mask-Programmed Access Access 2 E PROM Programmable (PROM) FLASH FIFO SRAM LIFO DRAM Shift Register CAM Sistemi Elettronici Programmabili
Memory Timing: Definitions Sistemi Elettronici Programmabili
Decoder reduces the number of select signals K = log N 2 Memory Architecture: Decoders M bits M bits S S 0 0 Word 0 Word 0 S 1 Word 1 Word 1 A 0 S Storage Storage 2 Word 2 Word 2 A cell cell 1 words A N -1 K Decoder S N -2 - Word N 2 Word N 2 - S N - - -1 Word N 1 Word N 1 K log N = 2 Input-Output Input-Output ( M bits) ( M bits) Intuitive architecture for N x M memory Too many select signals: N words == N select signals Sistemi Elettronici Programmabili
Array-Structured Memory Architecture Problem: ASPECT RATIO or HEIGHT >> WIDTH 2L-K - Amplify swing to rail-to-rail amplitude Selects appropriate word Sistemi Elettronici Programmabili
Data (64 bits) I/O Buffers Comparand Mask Commands CAM Array R/W Address (9 bits) Control Logic 9 2 words 3 64 bits Validity Bits 9 2 Priority Encoder Address Decoder Contents-Addressable Memory I/O Buffers I/O Buffers Commands Commands Validity Bits 9 2 Priority Encoder Validity Bits Address Decoder 9 2 Priority Encoder Address Decoder Sistemi Elettronici Programmabili
DRAM Timing SRAM Timing Self-timed Multiplexed Adressing Memory Timing: Approaches Sistemi Elettronici Programmabili
Read-Only Memory Cells BL BL BL VDD WL WL WL 1 BL BL BL WL WL WL 0 GND Diode ROM MOS ROM 1 MOS ROM 2 Sistemi Elettronici Programmabili
MOS OR ROM BL [0] BL [1] BL [2] BL [3] WL [0] V DD WL [1] WL [2] V DD WL [3] V bias Pull-down loads Sistemi Elettronici Programmabili
MOS NOR ROM V DD Pull-up devices WL [0] GND WL [1] WL [2] GND WL [3] BL [0] BL [1] BL [2] BL [3] Sistemi Elettronici Programmabili
MOS NOR ROM Layout Cell (9.5l x 7l) Programmming using the Active Layer Only Polysilicon Metal1 Diffusion Metal1 on Diffusion Sistemi Elettronici Programmabili
MOS NAND ROM V DD Pull-up devices BL [0] BL [1] BL [2] BL [3] WL [0] WL [1] WL [2] WL [3] All word lines high by default with exception of selected row Sistemi Elettronici Programmabili
No contact to VDD or GND necessary; drastically reduced cell size Loss in performance compared to NOR ROM MOS NAND ROM Layout Cell (8l x 7l) Programmming using the Metal-1 Layer Only Polysilicon Diffusion Metal1 on Diffusion Sistemi Elettronici Programmabili
V DD BL r word WL C bit c word Equivalent Transient Model for MOS NOR ROM Model for NOR ROM • Word line parasitics • Wire capacitance and gate capacitance • Wire resistance (polysilicon) • Bit line parasitics • Resistance not dominant (metal) • Drain and Gate-Drain capacitance Sistemi Elettronici Programmabili
Equivalent Transient Model for MOS NAND ROM V DD Model for NAND ROM BL C L r bit c bit r word WL c word • Word line parasitics • Similar to NOR ROM • Bit line parasitics • Resistance of cascaded transistors dominates • Drain/Source and complete gate capacitance Sistemi Elettronici Programmabili
D G S Non-Volatile MemoriesThe Floating-gate transistor (FAMOS) Floating gate Gate Source Drain t ox t ox + +_ n n p Substrate Schematic symbol Device cross-section Sistemi Elettronici Programmabili
20 V 0 V 5 V 20 V 0 V 5 V 10 V 5 V 5 V -2.5 V - S D S D S D Avalanche injection Removing programming voltage leaves charge trapped Programming results in higher V . T Floating-Gate Transistor Programming Sistemi Elettronici Programmabili
A “Programmable-Threshold” Transistor Sistemi Elettronici Programmabili
FLOTOX EEPROM Gate Floating gate I Drain Source V 20 – 30 nm -10 V GD 10 V 1 1 n n Substrate p 10 nm Fowler-Nordheim I-V characteristic FLOTOX transistor Sistemi Elettronici Programmabili
V DD EEPROM Cell BL WL Absolute threshold control is hard Unprogrammed transistor might be depletion 2 transistor cell Sistemi Elettronici Programmabili
Flash EEPROM Control gate Floating gate erasure Thin tunneling oxide 1 1 n source n drain programming p- substrate Many other options … Sistemi Elettronici Programmabili
Basic Operations in a NOR Flash Memory:Erase Sistemi Elettronici Programmabili
Basic Operations in a NOR Flash Memory:Write Sistemi Elettronici Programmabili
Basic Operations in a NOR Flash Memory:Write Sistemi Elettronici Programmabili
Basic Operations in a NOR Flash Memory:Read Sistemi Elettronici Programmabili
NAND Flash Memory Word line(poly) Unit Cell Source line (Diff. Layer) Sistemi Elettronici Programmabili Courtesy Toshiba
Select transistor Word lines Active area STI Bit line contact Source line contact NAND Flash Memory Courtesy Toshiba Sistemi Elettronici Programmabili
Characteristics of State-of-the-art NVM Sistemi Elettronici Programmabili
Read-Write Memories (RAM) • STATIC (SRAM) Data stored as long as supply is applied Large (6 transistors/cell) Fast Differential • DYNAMIC (DRAM) Periodic refresh required Small (1-3 transistors/cell) Slower Single Ended Sistemi Elettronici Programmabili
Q 6-transistor CMOS SRAM Cell WL V DD M M 2 4 Q M M 6 5 M M 1 3 BL BL Sistemi Elettronici Programmabili
CMOS SRAM Analysis (Read) WL V DD M BL 4 BL Q 0 = M Q 1 = 6 M 5 V V V M DD DD DD 1 C C bit bit Sistemi Elettronici Programmabili
CMOS SRAM Analysis (Read) 1.2 1 0.8 0.6 Voltage Rise (V) 0.4 0.2 Voltage rise [V] 0 0 0.5 1 1.2 1.5 2 2.5 3 Cell Ratio (CR) Sistemi Elettronici Programmabili
WL V DD M 4 M Q 0 = 6 M 5 Q 1 = M 1 V DD BL 1 BL 0 = = CMOS SRAM Analysis (Write) Sistemi Elettronici Programmabili
CMOS SRAM Analysis (Write) Sistemi Elettronici Programmabili
Static power dissipation -- Want R large L Bit lines precharged to V to address t problem DD p Resistance-load SRAM Cell WL V DD R R L L Q Q M M 3 4 BL BL M M 1 2 Sistemi Elettronici Programmabili
SRAM Characteristics Sistemi Elettronici Programmabili
BL 1 BL 2 WWL WWL RWL RWL M 3 V V X M X 2 DD T 1 M 2 V DD BL 1 C S V D BL 2 V V 2 DD T No constraints on device ratios Reads are non-destructive Value stored at node X when writing a “1” = V -V WWL Tn 3-Transistor DRAM Cell Sistemi Elettronici Programmabili
C S ------------ V V D = – V = V – V BL PRE BIT PRE C + C S BL 1-Transistor DRAM Cell Write: C is charged or discharged by asserting WL and BL. S Read: Charge redistribution takes places between bit line and storage capacitance Voltage swing is small; typically around 250 mV. Sistemi Elettronici Programmabili
DRAM Cell Observations • 1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out. • DRAM memory cells are single ended in contrast to SRAM cells. • The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation. • Unlike 3T cell, 1T cell requires presence of an extra capacitance that must be explicitly included in the design. • When writing a “1” into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value thanVDD Sistemi Elettronici Programmabili
Metal word line SiO 2 Poly Field Oxide Diffused + + n n bit line Inversion layer Poly Polysilicon induced by Polysilicon plate plate bias gate 1-T DRAM Cell Capacitor M word 1 line Cross-section Layout Uses Polysilicon-Diffusion Capacitance Expensive in Area Sistemi Elettronici Programmabili
Bit Bit Bit Bit Bit Bit Word M8 M9 M4 M5 CAM ••• CAM M6 M7 Word S S Word int CAM ••• CAM M3 M2 Match M1 Wired-NOR Match Line Static CAM Memory Cell ••• ••• Sistemi Elettronici Programmabili
CAM in Cache Memory CAM SRAM ARRAY ARRAY Hit Logic Address Decoder Input Drivers Sense Amps / Input Drivers Address Tag Hit R/W Data Sistemi Elettronici Programmabili
Periphery • Decoders • Sense Amplifiers • Input/Output Buffers • Control / Timing Circuitry Sistemi Elettronici Programmabili
Row Decoders Collection of 2M complex logic gates Organized in regular and dense fashion (N)AND Decoder NOR Decoder Sistemi Elettronici Programmabili
Hierarchical Decoders Multi-stage implementation improves performance • • • WL 1 WL 0 A A A A A A A A A A A A A A A A 0 1 0 1 0 1 0 1 2 3 2 3 2 3 2 3 • • • NAND decoder using 2-input pre-decoders A A A A A A A A 1 0 0 1 3 2 2 3 Sistemi Elettronici Programmabili
V DD V DD V DD V DD Dynamic Decoders Precharge devices GND GND WL 3 WL 3 WL 2 WL 2 WL 1 WL 1 WL 0 WL 0 V A A A A f DD 0 0 1 1 A A A A f 0 0 1 1 2-input NAND decoder 2-input NOR decoder Sistemi Elettronici Programmabili
D make V as small × D C V as possible t = ---------------- p I av large small Sense Amplifiers Idea: Use Sense Amplifer small s.a. transition input output Sistemi Elettronici Programmabili
Differential Sense Amplifier V DD M M 3 4 y Out M M bit bit 1 2 M SE 5 Directly applicable toSRAMs Sistemi Elettronici Programmabili
Differential Sensing ― SRAM Sistemi Elettronici Programmabili