370 likes | 509 Views
Learn about the process of selecting materials through screening, ranking, and shortlisting. Explore material indices, constraints, and objectives in design. Examples of materials indexes and solved problems included.
E N D
Progettazione diMateriali e Processi Modulo 1 – Lezione 3 Progettazione e selezione di materiali e processi A.A. 2015 – 2016 Vanni Lughi vlughi@units.it
Materials Data Example of materialpropertytable See CES
Materials Data Example of comparisontable See CES
Materials Data Example of single propertygraph See CES
Materials Data Example of two-propertygraph See CES
The selectionprocess Allmaterials Screening: applypropertylimits Innovative choices Ranking: apply material performance indices Subset of materials Shortlisting: applysupporting information Prime candidates Finalselection: applylocalconditions Final material choice
Function – Objectives - Constraints • Implicitfunctions (e.g. tie, beam, shaft, column) • Constraintsoftentranslatetopropertylimits (temperature, conductivity, cost, …) • Some constraints are more complex (e.g. stiffness, strength, etc.) asthey are coupledwithgeometry -> need of a specificobjective • Material indices help unravelsuchcomplexity
Material indices Performance = f (F, G, M) Functionalrequirements Material properties Geometry Ifseparable: Performance = f1(F) f2(G) f3(M) Material index
Material indices Material index: E0.5/ Material index: E/ Function Objective Constraint Tie Beam Shaft Column ….. Minimum cost Max energystorage Minimum weight Min. environmental impact …… Stiffness Strength Fatigueresistance Geometry ….. Material index: /
In thislecture: • Examples of materialsindexes for ties and beams • Example of ranking • Selectionstategy • Examples of screening • Tables of solvedproblems of elasticity etc. • Table of momentum of intertia
Tensile ties Main spar - beam Compression strut Undercarriage- compression E = Young’s modulus = Density = Yield strength Minimum weight design
Structural panels Structural beam Tensile ties Compression strut (column) Cm = Material cost / kg = Density = Yield strength Minimum cost design
Sometimes a single property • Sometimes a combination Either is a material index Constraints Objective minimise mass Stiffness Strength Explore these! Remember this one too! Criteria of excellence: material indices • Material index =combination of material propertiesthat limitperformance
Sometimes a single property • Sometimes a combination Either is a material index Constraints Objective minimise cost Material cost/kg Stiffness Strength Criteria of excellence: material indices • Material index =combination of material propertiesthat limitperformance
1000 Ceramics Index Composites Increasing M 100 Rearrange: E = ρ2 M2 Woods 10 Take logs: Young’s modulus E, (GPa) Metals Log E = 2 log + 2 log M 2 1 Polymers 0.1 Function Index Slope Tie 1 Beam 2 Panel 3 Elastomers Foams 0.01 10,000 100,000 1000 100 Density ρ(kg/m3) Ranking, using charts Light stiff beam:
Zoom Un-zoom Add envelopes Add text Cancel selection Black and white chart Box selection tool Grey failed materials Hide failed materials Line selection tool Line selection Enter slope 1 OK Cancel The chart-management tool bar
Search area 1 2 3 Ranked by Index Results 22 pass Material 1 2230 Material 2 2100 Material 3 1950 etc... Optimized selection using charts
1. Selection data Bar chart of index Edu Level 2: Materials 2. Selection Stages Graph Limit Tree - / ^ ( ) + * • List of properties • Density • Modulus • Yield strength • etc Ranked by Index Results 22 pass Material 1 2230 Material 2 2100 Material 3 1950 etc... Plotting indices as bar charts Tools Select Browse Search ( Modulus ^ 0.5 ) / Density Y-axis X-axis Advanced • List of properties • Density • Modulus • Yield strength • etc
Index Ranked by Index Results 22 pass Material 1 2230 Material 2 2100 Material 3 1950 etc... Plotting indices as functions
Function – Objectives - Constraints • Implicitfunctions (e.g. tie, beam, shaft, column) • Constraintsoftentranslatetopropertylimits (temperature, conductivity, cost, …) • Some constraints are more complex (e.g. stiffness, strength, etc.) asthey are coupledwithgeometry -> need of a specificobjective • Material indices help unravelsuchcomplexity
Search Browse Select Tools 1. Selection data Choice… Select from Level 2: Materials 2. Selection Stages Graph Limit Tree Custom Define your own subset Edu Level 1 Materials Processes ….. Edu Level 2 Materials Materials with Durability props Materials with Eco properties Processes ….. Plotting and selection tools CES Selection Toolbox
General properties Limit Mechanical propertiesMin. Max. Glasses 100 50 70 16 Young’s modulus GPa Yield strength MPa Hardness Vickers Fracture toughness MPa.m1/2 Ceramics Metals Foams Polymers Thermal propertiesMin. Max. 0.1 1 10 100 200 1 10 1600 Max service temp C T-conductivity W/m.K T-expansion 10-6/C Specific heat J/kg.K Insulator Thermal conductivity (W/m.K) Conductor Results X out of 100 pass Ranking Prop 1 Prop 2 Material 1 2230 113 Material 2 2100 300 Material 3 1950 5.6 etc... Electrical properties Eco properties Screening with a LIMIT STAGE
Graph Bar chart Box selection tool Line/gradient selection tool Property Line selection Enter slope 1 OK Cancel Bubble chart Results X out of 100 pass Ranking Prop 1 Prop 2 1 Material 1 2230 113 Material 2 2100 300 Material 3 1950 5.6 etc... Property 2 Property 1 Screening with a GRAPH STAGE
Tree Trees Materials Universe Process Universe Materials that can be die-cast Material Universe Ceramics and glasses Hybrids: composites Process Universe Results X out of 100 pass + Metals and alloys Selected records Joining + Polymers and elastomers Shaping Material 1 Material 2 Material 3 etc... + Surface treatment + + + + Screening with a TREE STAGE - Die casting Shaping – Die casting
The database References data-table DATA FOR • Metals & alloys • Polymers • Ceramics & glasses • Hybrids DATA FOR • Joining • Shaping • Surface treatment Links Materials data-table Processes data-table Suppliers data-table Select on links Organizing information: the CES Edu database
Translation Constraints • Transparent - of optical quality • Tough – high fracture toughness • Able to be molded Design requirement Protective visor for law enforcers Young’s modulus GPa Yield strength MPa Fracture toughnessMPa.m1/2 Plus graph stage Limit stage Mech. propertiesMin. Max. Optical properties. Transparency ? ? Opaque Translucent Transparent Optical quality Materials for riot shields Best choice: Polycarbonate