1 / 33

Chap 5: Absorption Spectrum of a one electron atom or ion

Absorption: A + h   A* E i + h  = E f or h  =E f - E i A Unexcited atom/molecule with energy E i A* Excited Atom/Molecule with energy E f after the absorption of a photon of energy h . Chap 5: Absorption Spectrum of a one electron atom or ion.

autumn-tate
Download Presentation

Chap 5: Absorption Spectrum of a one electron atom or ion

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Absorption: A + h A* Ei+ h = Ef or h =Ef - Ei A Unexcited atom/molecule with energy Ei A* Excited Atom/Molecule with energy Ef after the absorption of a photon of energy h . Chap 5: Absorption Spectrum of a one electron atom or ion Quiz Next Week on Chap 5 and Section 4.6 & 4.7(2-D)

  2. 4 photons hn hn hn hn Absorption When the Zero Magnetic Field (B=0) Mode n Energy 0 r E2 E1 V(r) attractive

  3. 4 -1 photons hn hn hn hn Absorption When the Zero Magnetic Field (B=0) Mode n Energy A + h A* E1+ h = E2 or h =E2 – E1 0 r E2 E1 V(r) attractive

  4. Magnetic field removes the degeneracy of the m-levels Since magnetic fields breaks the left/right hand symmetry of space Chap 5: M-states split in a B-field (removes degeneracy) m=+1 m=0 2s 2p m=-1 h 1s

  5. No magnetic field m=+1 m=0 2s 2p Magnetic field m=-1 Energy Energy h m 1 0 -1 0 0 r r 1s E2 E2 E1 E1 V(r) attractive V(r) attractive

  6. Chap. 5:H-atom and One electron Ions Eigen Functions and Values Ylm(. Spherical Harmonic is angular part of the eigen-function and is also the eigen function for the total angular momentum L2 L2 Ylm(=l(l+1)h2 Ylm( and Lz Ylm ( = mhYlm ( Where <|L|2>=L2 =l(l+1)h2 is the magnitude of the angular momentum squared and is a physical observable The magnitude of the angular momentum vector is L=√l(l+1)h2 In the Bohr limit! Magnitude of L~ l2h, l >>1 <|L|2>=L2 = l(l+1)h2 l2h2 for l>>1 Correspondence Principle and the its z-axis projection <Lz>=Lz =mh Sincel(l+1)h2 and mh are Eigen Values they can be measured Therefore l, m and En are physical Observables completely characterizes a Quantum State along with Electron spin

  7. Chap 5: Angular Momentum Eigen Values Vector model of t bare angular momentum L: only the Magnitude L and one component, Lx, Ly or Lzcan be measured! <|L|2>=L2l(l+1)h2 z-axis projection <Lz>=Lz=mlh z Magnitude of L L= √l(l+1)h2 ml =+1 <Lz>=Lz= mlh L y ml =0 x L ml =-1

  8. Chap 5: Classical Magnetic dipole moment   magnetic dipole moment <L> Attracted to high B-field ml < 0, = r2 m L~ -<L> Repelled from high B-field ml > 0

  9. Chap 5: Stern-Gerlach Experiment for discovering electron spin Magnetic field(B) increases with z: U(z) =-mB potential energy in in the field mL~ <Lz> ~ ml Orbital Angular momentum mS~ <Sz> ~ ms <Sz> component of the spin angular momentum Fig. 5-11, p. 184

  10. Vector model of the Spin angular momentum S=1/2 S =1/2 is the total spin quantum number B||z repelled from stronger B-field ms=+1/2 S-spin angular momentum <Sz>=Sz= msh x,y plane <|S|2>=S2= s(s+1)h2 z-axis projection <Sz>=Sz=msh ms=-1/2 attracted to stronger B-field

  11. Chap 5: Classical Magnetic dipole moment   magnetic dipole moment <S> ~ <Sz> Attracted to high B-field ms=-1/2 =r2 m s~ -<S> Repelled from high B-field ms=+1/2

  12. Chap. 5:H-atom and One electron Ions Eigen Functions and Values Ylm( Angular part of the eigen-function and is also the eigen function for the total angular momentum L2 Ylm(=l(l+1)h2 Ylm( and Lz Ylm( = mhYlm( <|L|2> = l(l+1)h2  l2h2 for l>>1 the Bohr limit! Magnitude of L~ (1) h, l >>1 and the its z-axis projection <Lz>=mh L2 Ylm(=l(l+1)h2 Ylm( and Lz Ylm( = mhYlm( Therefore n, l, m and En completely characterizes a Quantum State along with Electron spin angular momentum!

  13. Chap 5: Angular Momentum Eigen Values Vector model of t bare angular momentum L: only the Magnitude L and one component, Lx, Ly or Lzcan be measured! <|L|2>=L2l(l+1)h2 z-axis projection <Lz>=Lz=mlh z Magnitude of L L= √l(l+1)h2 ml =+1 <Lz>=Lz= mlh L y ml =0 x L ml =-1

  14. Chap 5: Angular Momentum Eigen functions Ypz=Y10( z  x <Lz>=0 L Angular eigen function for the State l=1; m=0 Ypz=Y10(=√(3/4π) cos() Angular momentum Eigen Function + Phase L=√2 h + Notice that only Eigen Values are knowable, i.e., measurable: E, L2, Lz - - Phase Ypz=Y10(= √(3/4π) cos() |Y10(|2 =(3/4π) cos2()

  15. Chap 5: Angular Momentum Eigen functions Ypz= Ypz Ypy Ypz=Y10~cos() Linear Combinations of Eigen Functions Ypx=(1/√2){Y11 + Y1-1} ~ sin()cos() Ypy=(1/√2){Y11 - Y1-1} ~ sin()sin()

  16. Chap. 5: 3-D Probability Density r|2dV =|R(r)Y()|2dV Probability per unit volume of finding the electron in the volume element: dV=dxdydz= {rd}{rsin(d}dr |R(r )|2 (r2dr) probability of finding the electron between r and r+dr |R(r )|2 r2 Prob per unit length |Y()|2sin(dd= |Y()|2d probability of finding the electron in the solid angle d=sin(dd |Y()|2 Prob per unit solid angle Fig. 5-1, p. 171

  17. Chap. Solid Angle for a Sphere of Radius r The solid angleddA/r2 = sin(dddV= dr dA(surface area of dV), dA = r2sin(dd A=4πr2(surface area of the sphere)r2 = 4π solid angle portended(projected) by a sphere dA Differentail Area

  18. Chap 5: Angular Momentum Eigen functions Ypz= Ypz Ypy Ypz=Y10~cos() Linear Combinations of Eigen Functions Ypx=(1/√2){Y11 + Y1-1} ~ sin()cos() Ypy=(1/√2){Y11 - Y1-1} ~ sin()sin()

  19. z y x |Y00|2 |Y1±1|2 |Y10|2

  20. Table 5-2, p. 175

  21. Chap 5:1s ~R10( r ) Y00(, 2s~R20( r ) Y00(, 3s~R30( r ) Y00( Number of Nodes in Rnl (n-l-1): radial nodes l angular nodes a0 the Bohr is most probable radius Sphere Radius rs Prob < 0.05 of max prob for finding electron at r > rs

  22. Chap 5:, 2pz~R20( r )Ypz(, 3pz R31( r )Ypz( Ypz ~ cos( |Ypz|2~ |cos( r  2pz~R20( r )Ypz( One electron orbital

  23. Chap 5:, 2pz~R20( r )Ypz(, 3pz R31( r )Ypz( Ypz ~ cos( |Ypz|2~ |cos( r  L 2pz~R20( r )Ypz(

  24. Chap 5:, 2pz~R20( r )Ypz(, 3pz R31( r )Ypz( 2pz~R20( r )Ypz( 2pz one electron orbital 2px~R21( r )Ypx( 2px one electron orbital 2py~R21( r )Ypy( 2py one electron orbital

  25. Chap 5: Angular Momentum Eigen functions d-orbital L dzz ~ R32( r ) Y20( L r  r  L  dx2 -y2 ~ R32{Y22 +Y2-2}~cos(2) dxy ~ R32{Y22 - Y2-2}~ sin(2)

  26. Chap 5: Aufbau Process; Atomic Ground State Electron Configuration P D P D P P P P P D

  27. Chap 5: Periodic Table reflects the Electron Configuration; Atomic Properties Alkali Metals Rare Gases 2 8 Noble Metals Transition Metals 8 18 18 Halogens Alkaline earth Lanthanides Actinides

  28. Chap 5: Periodic Table reflects the Electron Configuration: ionization Energies X X+ + e E=E(X+) - E(X)=IE1 and X+X2+ + e E=E(X2+) - E(X+)=IE2

  29. Chap 5: Periodic Table reflects the Electron Configuration: ionization Energies

  30. Chap 5: Periodic Table reflects the Electron Configuration: Electron Affinity X + e X-E = E(X-) - E(X)= - EA

  31. Chap. 5:H-atom and One electron Ions Eigen Funct, and Values nlm(r,,) = Rnl( r )Ylm(: Eigen Function : Energy Eigen Values (same as Bohr) Principal quantum number Angular momentum quantum number Magnetic quantum number

  32. Chap 5: Quantum Mechanical Energy levels The Energy Eigen Values are Independent of l and m! Therefore each n level has n, l levels (0,1, ..n-1), each with (2l+1) states and is therefore n2 degenerate. Consequently each (nl) level has (2l+1) m-states and is (2l+ 1) degenerate

  33. Chap 5: Average QM distance of the electron from the Nucleus Chap 5: Average QM distance of the electron from the Nucleus The Average Quantum Mechanicaldistance between the Nucleus and the electron:<rnl> = (a0n2/Z){1+(1/2)[1- l(l+1)2/n2]}.For n>>1 and n~l reduces tothe Bohr Modelrn= (a0n2/Z) is also the most probable distance of the electron from the nucleusVisualizing atomic orbital probability density:http://www.phy.davidson.edu/stuhome/cabell_f/density.html The Average Quantum Mechanicaldistance between the Nucleus and the electron:<rnl> = (a0n2/Z){1+(1/2)[1- l(l+1)2/n2]}.For n>>1 and n~l reduces tothe Bohr Modelrn= (a0n2/Z) is also the most probable distance of the electron from the nucleusVisualizing atomic orbital probability density:http://www.phy.davidson.edu/stuhome/cabell_f/density.html

More Related