Download
slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
製造執行系統 Manufacturing Execution System : MES PowerPoint Presentation
Download Presentation
製造執行系統 Manufacturing Execution System : MES

製造執行系統 Manufacturing Execution System : MES

1728 Views Download Presentation
Download Presentation

製造執行系統 Manufacturing Execution System : MES

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. 製造執行系統 Manufacturing Execution System : MES

  2. 產業Operation 產業e化架構 Manufacturing Sequence Flow Why MES (factory operation point of view) Why MES (Industry point of view) MES 定義 MES 功能 MES 架構 MES 技術 MES 與其它e 化系統的整合 Outline

  3. 產業活動 策略規劃 行政支援與管理 行 銷 品 質 工 程 工程與研發 生產規劃 廠區控制 (生產)工廠自動化 配 送 維修與服務

  4. 產業Operation 產業e化架構 Manufacturing Sequence Flow Why MES (factory operation point of view) Why MES (Industry point of view) MES 定義 MES 功能 MES 架構 MES 技術 MES 與其它e 化系統的整合 Outline

  5. 產業電子化活動

  6. 電子化應用系統 (I)

  7. 電子化應用系統 (II)

  8. 電子化應用系統 (III) 基礎發展環境 企業智財BIC / 知識管理KM 供應面 需求面 顧客關係管理 CRM 企業資源規劃 ERP 供應鏈管理 SCM 工程資料管理 PDM 製造執行系統 MES 電子商務平台/網站應用程式伺服軟體/應用程式伺服軟體 EC Platform / WEB Application Server/ Application Server

  9. 產業Operation 產業e化架構 Manufacturing Sequence Flow Why MES (factory operation point of view) Why MES (Industry point of view) MES 定義 MES 功能 MES 架構 MES 技術 MES 與其它e 化系統的整合 Outline

  10. What is IC industry

  11. IC Manufacturing Process (I)

  12. IC Manufacturing Process (II) 說明 圖釋 流程 薄膜 薄膜(Thin_film) 1.化學氣相沉積(CVD) 2.金屬濺鍍(PVD) 3.擴散(Diffusion) Wafer FILM Wafer FILM Wafer 黃光(PHOTO) 1.光罩(MASK) 2.光阻(Coater) 3.曝光(Exposure) 4.顯影(Development) 黃光 光罩 光阻 FILM Wafer 光阻 FILM Wafer 蝕刻(ETCH) 1.濕蝕刻(Wet-ETCH) 2.乾蝕刻(DRY-ETCH) 植入 蝕刻 光阻去除(PR remove) 將光阻去除後就是我們所需的 圖形(PATTERN) 光阻去除

  13. AlCu 12KA PESiN 6KA 4KA PEOX 4KA SiN 750A M8 (Cu) M8 (9K) USG 7.5KA (9.9KA) SiN 300A (IMD7=6.5KA) for V7=0.36*0.36 1200A USG 7.2KA Via7 SiN 500A M7 (3.5K) FSG 2.3KA (4.2KA) SiN 300A SiN 500A M3 (Cu) M3 (3.5K) FSG 2.3KA (4.2KA) SiN 300A 900A FSG 4.9KA Via2 SiN 500A M2 (Cu) FSG 2.3KA (4.2KA) M2 (3.5K) SiN 300A 900A FSG 4.9KA (IMD1~6=4.5KA) Via1 SiN 500A M1 (Cu) FSG 1.7KA (2.9KA) M1 (2.6K) SiN 300A 600A HDP PSG 5.5KA W-Plug SiN 400A STI IC Manufacturing Process (III)

  14. IC Manufacturing Process (IV)

  15. 產業Operation 產業e化架構 Manufacturing Sequence Flow Why MES (factory operation point of view) Why MES (Industry point of view) MES 定義 MES 功能 MES 架構 MES 技術 MES 與其它e 化系統的整合 Outline

  16. 整合4M (Man, Machine, Material and Method) 以最短的時間及最少的成本產出最好品質的產品. Cost Cycle Time Yield Productivity IC Manufacturing Process Management (1)

  17. There are 30-50 basic routes for production FAB There are 500-1000 product routes in one FAB There are 3000 tools monitoring routes in one FAB There are 500-1000 production tools in one FAB There are 1K wafers start in one FAB There are daily 80K track-in-out in one FAB There are daily 15M transactions in one FAB There are average daily 600 people operation in one FAB There are daily 1-2K tool monitoring operation in one FAB There are average 10K control/dummy wafers in one FAB There are average 14K SPC charts used in one FAB There are 20K real-time tool monitoring charts in one FAB There are average 4000 tool alarms in one FAB There are average 2K final wafer test data files generated IC Manufacturing Process Management (2)

  18. Why we need MES ? More technologies More tighten process control More cost for any production lost More demand for cycle time management More automation operation is required IC Manufacturing Process Management (3) Material Tool Human Quality Technology Knowledge

  19. IC Manufacturing Process Management (4)

  20. 產業Operation 產業e化架構 Manufacturing Sequence Flow Why MES (factory operation point of view) Why MES (Industry point of view) MES 定義 MES 功能 MES 架構 MES 技術 MES 與其它e 化系統的整合 Outline

  21. IC Manufacturing Process Management (4) Quick Response to Business Change Cycle

  22. Semiconductor challenge in ITRS Complexity Management • Rapid changes to business needs and demands. • Increasing process and product complexity. • Larger wafers and carriers. • Increased reliance on factory information and control systems. Factory and Process Optimization • Increased customer expectation to meet on time deliver. • Increased urgency for improved factory effectiveness. • High factory yield at start-up. • Reduce wafer and product costs. Extendibility, Flexibility and Scalability • Reuse of factory information and control systems. • Factory systems that support rapid process and technology changes. [Source : ITRS 2003]

  23. Improvement for Semiconductor challenge in ITRS • Cost per unit area of silicon—Manufacturing cost per unit area of silicon is a easure of productivity. The capital cost of a factory has grown significantly each year, from $50M US in the 1980s to over $3B US in 2003.2 • Time to ramp a factory to high-volume production with high yields—Decreasing time to ramp a factory to high volume production and high yield has more economic impact than reducing operating costs. New factories must be built and ramped to mature production at a much faster rate as reflected in Tables 86 and 89. Existing factories must be upgraded faster without impacting ongoing production. • Increasing flexibility to accommodate technology and business changes—Technology advances and the globalization of manufacturing enterprises have led to a decrease in cost for electronic components. This enables new markets to open and creates the need to increase the pace of new product introduction. The flexibility to accommodate these changes in business expectations must improve without significant cost impacts.

  24. KPI in ITRS – Factory Operation [Source : ITRS 2003]

  25. KPI in ITRS – Production Equipment [Source : ITRS 2003]

  26. KPI in ITRS – FICS [Source : ITRS 2003]

  27. KPI in ITRS – Facility [Source : ITRS 2003]

  28. KPI in ITRS – Metrology [Source : ITRS 2003]

  29. KPI in ITRS – Process Integration

  30. KPI in ITRS – Yield Learning [Source : ITRS 2003]

  31. KPI in ITRS – Yield Enhancement [Source : ITRS 2003]

  32. 產業Operation 產業e化架構 Manufacturing Sequence Flow Why MES (factory operation point of view) Why MES (Industry point of view) MES 定義 MES 功能 MES 架構 MES 技術 MES 與其它e 化系統的整合 Outline

  33. MES

  34. manufacturing execution system: Software systems designed to integrate with enterprise systems to enhance the shop floor control functionality that is usually inadequate in ERP systems. MES provides for shop floor scheduling, production and labor reporting, integration with computerized manufacturing systems such as automatic data collection and computerized machinery. MES is a term used to describe systems that track and manage all aspects of a job in real time while it is in the execution phase or in process It may include resource management, capacity scheduling, maintenance management, statistical quality control, laboratory information management, process management, data collection, plant wide document management and process optimisation. MES is focused on the short term and may link to ERP/MRPII software for higher level planning and control tasks. Enables network managers to gather control data from the shop floor into coherent and relevant information. Key functions include data acquisition, dispatching, document control, scheduling, resource allocation, product history, operational analysis, and management of labor, maintenance, processes, and quality. 製造執行系統是一從接到訂單從事生產開始到產品完成,傳送產品在生產線上生產的即時資訊 給使用者監看。它將工廠生產的即時和準確資料回應於報表或其他方式上,呈現的結果會隨著 現在情況的不同迅速改變,其目的在於降低沒有附加價值的活動,如機台當機等,並提高有效 的生產。MES可以將讓產品準時交貨,提高庫存週轉率,增加總生產盈餘,和加速資金的流動, 當生產活動發生緊急事件時,他還提供現場緊急狀態的資訊,並可經由兩條以上的管道通知使用者 MES definition

  35. MES History 1960年代的晚期到1970年代初期    從會計系統衍生出物料需求規劃(MRP),此系統用來協助工廠對物料需求做好規劃。 1970年的晚期到1980年代初期 電腦對資料的處理能力越來越強,MRP則衍生為MRPII,此MRPII則包含了現場報表系統(Shop Floor Reporting System)、採購系統(Purchasing System)與其他相關功能。在這段期間,許多公司開始認為他們需要其他系統去管理更多事物,因MRPII不強調預測及需求分配上的管理,對現場的管理功能也較缺乏;為了改善這些缺失,預測、配銷資源規劃(Distributed Resource Planning;DRP)、MES(強調WIP追蹤)與單一功能的系統(如品管功能)等相關系統就應運而生,但這些系統卻未完全整合,所以系統間資料的交換非常困難。 1980年的晚期至1990年初期 這些系統開始嘗試藉著擴大功能來解決「資訊孤島的問題」。於是MRPII變成企業資源規劃(Enterprise Resource Planning, ERP)、DRP衍生為供應鏈管理,而現場管理功能則變為整合性的MES。到了1990年代後期,傳統製造系統之間的界線就變得很模糊,如ERP逐漸含有現場管理功能。 以上資料整理自【MESA International White Paper No. 5, 1997】。

  36. MES History

  37. MES Response

  38. 產業Operation 產業e化架構 Manufacturing Sequence Flow Why MES (factory operation point of view) Why MES (Industry point of view) MES 定義 MES 功能 MES 架構 MES 技術 MES 與其它e 化系統的整合 Outline

  39. MES core functions

  40. MES assist functions

  41. MES functions 生產產品追蹤 維修保養管理 作業員 管理 原物料(特氣化)需求 資源使用及追縱 產能效率管理 追蹤及控制 規劃及排程 現場生產排單 MES 系統 生產指令及 操作程序 產品規格管理 自動化 資料管理 MES 資料連結 SPC 品質管理 自動化介面及pc連線 工程資料收集

  42. Manufacturing Flow + Process Criteria Material Flow Resource (人, 設備, Cassette..) Production Objects 生產/效率/品管 Fab Off-line Management Fab In-line Operations Fab Off-line Analysis • WIP 在製品管理 • 良率統計 • 機台管理 • Cycle Time管理 • 工單管理 • 材料管理 • UPF 標準化, 合理化 • 減少 MO - 機台連線自動化 • 減少人力 - 傳輸搬運自動化 • 製造效率控制 (派工) • 製程條件控制 (光罩,Recipe) • 即時品檢 – IPQC/OQC • 提高設備/資產使用率 • 現場產品狀況 • 人機效能分析 • 產能分析 • 生產效率分析 • 成本分析 • QA 管理 • 良率提昇 How MES help MES

  43. How MES help Challenge if Without MES With MES’s Help • Run Cards 記錄所有事件 • 人工控制所有生產活動 • 生產流程控制靠Run Card • 人工機台操作 • 人工製程條件控制 • 生產資料收集困難, 無即時 SPC 管制 • 品質管制不即時,需人工重新輸入 • 派工困難 • 材料管理 • 無即時現場管理資訊 (在製品,機台,人) • 生產效率分析困難 • 工程資料分析困難 • 管理報表產生困難 • 所有資料存入電腦, 方便資料擷取及管理 • 電腦控制 (或建議) 所有生產活動 • 簡化操作流程並防止錯誤發生 • 自動化並防止 Miss Operation • Recipe/Mask, Data Feedback/Forward • 資料自動收集, 分類, 送給 SPC 管制 • 電腦即時管制, 並採取 Actions • 有效率的派工邏輯 • 材料比對及管理 • Real-time Fab-wide 管理 • Real-time 資料隨時可作分析 • 節省資料整理時間 • Information at your fingertip

  44. PART management BOM, Process management (tool, equipment) SPEC management (quality spec in each process, queue time) Technology Management Tool management Layout management Scheduling and Dispatching management Priority management (Link with SCM) Capacity Planning Dispatching agent Track-In-Out management Recipe management Tool ALM management Equipment management Process control management Manufacturing Function Group in semiconductor(1)

  45. Automatic Tool Control Integrated Material, MES and Tool Automatic data collection (MFG data and ENG data) Tool control (track-in, process, track-out) Real-time tool monitoring Real-time process monitoring WIP tracking and decision support system Detail WIP tracking (WIP-Tool-Human-Time-Event) Tool Utilization (OEE) Super Hot Lot Management Hold Lot management Alarm management Data quality control Queue time management Rework Management SPC control OCAP Yield analysis Manufacturing Function Group in semiconductor(2)

  46. Tool Management Tool ID, Capability Tool constraint Tool Layout (link with AMHS) AMHS management Human Management Security Certification Time management Material Management FOUP AMHS (MCS management) GAS/ Chemistry Integration SCM integration (scheduling) PDM integration (PART) Engineering Data Integration Manufacturing Function Group in semiconductor (3)

  47. Benefit Type Description General Benefits Improve yield Reduce cycle time Production floor management Improve throughput Improve equipment utilization Eliminate/Reduce manual errors Project-Specific Benefits Improve customer satisfaction Improve overall effectiveness Improve competitiveness Qualitative Benefits MES benefit Source: TIBCO Software

  48. MES benefit • The potential gain by implementing MES addresses the need for immediate current, on-line information that allows users of the MES system to make the best informed decisions regarding the application of inventory, plant resources and people: • Reduces manufacturing cycle times • Reduces WIP Inventory • Reduces paperwork between shifts • Eliminates lost paperwork/blueprints • Improves customer services • Reduces or eliminates data entry • Reduces lead time • Improves product quality • Empowers plant operations people • Responds to unanticipated events