1 / 57

ACCIONES BASICAS DE CONTROL

ACCIONES BASICAS DE CONTROL. ACCIONES BASICAS DE CONTROL.

Download Presentation

ACCIONES BASICAS DE CONTROL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ACCIONES BASICAS DE CONTROL

  2. ACCIONES BASICAS DE CONTROL Un controlador automático, compara el valor real de la salida de una planta con la entrada de referencia (el valor deseado), determina la desviación y produce una señal de control que reducirá la desviación a cero ó a un valor pequeño. La manera en la cual el controlador automático produce la señal de control se denomina acción de control.

  3. ACCIONES BASICAS DE CONTROL Los controladores industriales se clasifican, de acuerdo con sus acciones de control: • Todo o nada (2 posiciones, on-off) • Proporcional • Proporcional + Integral • Proporcional + Derivativo • Proporcional + Integral + Derivativo (PID)

  4. ACCIONES BASICAS DE CONTROL Configuración de un sistema de control automático en lazo cerrado.

  5. ACCIONES BASICAS DE CONTROL Para ejemplificar las acciones de control, se usará el modelo de un motor de c.d. En donde es la velocidad en rad/sec es el voltaje de alimentación en volts

  6. ACCIONES BASICAS DE CONTROL Para poder apreciar las acciones de control, analizaremos en lazo abierto el comportamiento del motor, alimentadolo con su voltaje máximo de 20 volts.

  7. ACCIONES BASICAS DE CONTROL Control Dos posiciones (Todo o nada, on-off, Bang-Bang) El dispositivo corrector final tiene solamente 2 posiciones o estados de operación. Si la señal de error es positiva, el controlador envía el dispositivo corrector final a una de las 2 posiciones. Si la señal de error es negativa, el controlador envía el dispositivo corrector final a la otra posición.

  8. ACCIONES BASICAS DE CONTROL Supongamos que la señal de salida del controlador es u(t) y que la señal de error es e(t). Si U1=-U2, y U1=U0, entonces

  9. ACCIONES BASICAS DE CONTROL Aplicando un control Todo Nada para mantener la velocidad del motor en

  10. ACCIONES BASICAS DE CONTROL

  11. ACCIONES BASICAS DE CONTROL Se observa que la velocidad llega al valor deseado y se conserva ahí, al igual que el error se conserva en cero. Pero el voltaje de control para lograr esto presenta unas oscilaciones de frecuencia infinita, la cual no puede ser implementada por ningún actuador ó dispositivo corrector final. Ahora se verá un dispositivo corrector final que pueda implementar un frecuencia finita.

  12. ACCIONES BASICAS DE CONTROL Para ello, es necesario saber que todos los actuadores todo o nada tienen una pequeña zona de actuación o brecha diferencial, la cual está definida como el más pequeño rango de valores medidos que debe atravesar para hacer que el actuador vaya de una posición a la otra

  13. ACCIONES BASICAS DE CONTROL El actuador que consideraremos será una configuración de transistores que servirán para manipular el voltaje alimentado al motor. Como se sabe, el transistor requiere de un cierto voltaje en su base para poder ser encendido, por lo tanto, la señal de error tendrá que superar este nivel para poder encender los transistores adecuados. Suponiendo que se necesita 1V para la base.

  14. ACCIONES BASICAS DE CONTROL

  15. ACCIONES BASICAS DE CONTROL

  16. ACCIONES BASICAS DE CONTROL Concluciones: • El control todo nada sólo sirve para manejar actuadores de dos posiciones. • La desventaja es que los actuadores se desgastan muy rápido. • En la realidad con este controlador siempre se obtienen pequeñas oscilaciones alrededor del valor deseado.

  17. ACCIONES BASICAS DE CONTROL En general, cuando el sitio de conmutación de la variable dependiente depende no solo del valor de variable independiente, sino también de su dirección de aproximación, decimos que existe histéresis.

  18. ACCIONES BASICAS DE CONTROL Control Proporcional El dispositivo corrector final no es forzado a tomar una de dos posiciones disponibles. En lugar de esto, tiene un rango continuo de posiciones posibles. La posición exacta que toma es proporcional a la señal de error. En otras palabras, la salida de bloque controlador es proporcional a su entrada.

  19. ACCIONES BASICAS DE CONTROL Para un controlador con acción de control proporcional, la relación entre la salida del controlador u(t) y la señal de error e(t) es o en Laplace

  20. ACCIONES BASICAS DE CONTROL Del diagrama en lazo cerrado obtenemos

  21. ACCIONES BASICAS DE CONTROL Desde el punto de vista del error de estado estable, la planta con controlador en lazo abierto no tiene integradores, por lo tanto, presentará un error finito. Esto indica que con el control proporcional siempre habrá un offset. Desde el punto de vista del controlador, porque el error no es cero? Analizando el límite del error en el infinito

  22. ACCIONES BASICAS DE CONTROL El error queda definido como: Escogiendo un valor arbitrario de Kp=10.

  23. ACCIONES BASICAS DE CONTROL

  24. ACCIONES BASICAS DE CONTROL Haciendo zoom para apreciar el offset

  25. ACCIONES BASICAS DE CONTROL Se observa que se cumple aproximadamente con los propósitos del control con altas ganancias. Por otro lado, en un instante de tiempo, el voltaje llega a ser de 100 volts, en donde el voltaje máximo es de 20 volts, para esto se dispone de un bloque de saturación para limitar la salida, tal y como sería en la realidad.

  26. ACCIONES BASICAS DE CONTROL

  27. ACCIONES BASICAS DE CONTROL

  28. ACCIONES BASICAS DE CONTROL El control proporcional tiene una ventaja importante sobre el control todo o nada. Elimina la constante oscilación alrededor del valor de referencia. Con esto proporciona un control de la planta más preciso, y reduce el desgaste y rotura de actuadores mecánicos. Pero la desventaja es que si la planta no posee integradores, siempre habrá un offset.

  29. ACCIONES BASICAS DE CONTROL Proporcional + Integral Este controlador es la suma de una acción proporcional y una integral. Se ha visto que la acción proporcional nos acerca al valor deseado, y la acción integral nos lleva exactamente al valor deseado. Entonces para que combinar ambas acciones, y no sólo usar una acción integral?

  30. ACCIONES BASICAS DE CONTROL Para ver las diferencias, se simula la planta con un integrador con ganancia de 10.

  31. ACCIONES BASICAS DE CONTROL

  32. ACCIONES BASICAS DE CONTROL Se observa que la respuesta del integrador es relativamente lenta, es decir, se alcanza el estado estable muy lentamente. Además se presentan pequeñas oscilaciones que en algunas plantas no serian deseables. Por otro lado, la respuesta proporcional, aunque sólo se acerca a la referencia, su respuesta es rápida y no presenta oscilaciones.

  33. ACCIONES BASICAS DE CONTROL Es por eso que se combinan ambas acciones para tener los beneficios de una respuesta rápida sin oscilaciones de una acción proporcional y una respuesta que nos lleve exactamente al valor deseado de una acción integral. A este controlador también se le conoce como: proporcional-reposicionador.

  34. ACCIONES BASICAS DE CONTROL Esta acción se define como: cuya función de transferencia es:

  35. ACCIONES BASICAS DE CONTROL en donde Ti es el tiempo integral. El inverso de Ti se conoce como velocidad de reajuste, la cual nos da la cantidad de veces por minuto que se duplica la parte proporcional de la acción de control. Diagrama a bloques del controlador PI

  36. ACCIONES BASICAS DE CONTROL con Ti=0.1

  37. ACCIONES BASICAS DE CONTROL

  38. ACCIONES BASICAS DE CONTROL Se aprecia una respuesta rápida sin oscilaciones y que alcanza el valor deseado. Pero esto es el caso ideal, hay que agregar el efecto de los actuadores (transistores) agregando un elemento de saturación con límites de 20 y -20.

  39. ACCIONES BASICAS DE CONTROL

  40. ACCIONES BASICAS DE CONTROL

  41. ACCIONES BASICAS DE CONTROL Proporcional + derivativo La acción de control de un controlador proporcional-derivativa (PD) se define y la función de transferencia es

  42. ACCIONES BASICAS DE CONTROL Td es la constante de tiempo derivativo. La acción de control derivativa se le llama aveces como control de velocidad. Td es el intervalo de tiempo durante el cual la acción de velocidad hace avanzar el efecto de la acción proporcional. La acción derivativa tiene la ventaja de ser de previsión, pero amplifica las señales de ruido. Nunca se usa sola, y es útil sólo en los transistorios.

  43. ACCIONES BASICAS DE CONTROL Para Td=0.5

  44. ACCIONES BASICAS DE CONTROL

  45. ACCIONES BASICAS DE CONTROL Se observa que debido a que el error es en un inicio relativamente muy alto, el control, practicamente se dispara debido a la acción derivativa. Después el error decae suavemente, y el efecto derivativo decae también. Al final queda el efecto proporcional que sólo se aproxima a la referencia. Agregando el efecto de saturación.

  46. ACCIONES BASICAS DE CONTROL

  47. ACCIONES BASICAS DE CONTROL

  48. ACCIONES BASICAS DE CONTROL Se observa que se presenta prácticamente el mismo comportamiento anterior, sólo que con más transitorios notorios debidos a la acción derivativa.

  49. PID Proporcional + Integral + Derivativo Aún cuando el control proporcional-integral es adecuado para la mayoría de las situaciones de control, no es adecuado para todas las situaciones. Hay algunos procesos que presentan problemas de control muy difíciles que no pueden manejarse con un control PI.

  50. PID Específicamente, hay dos características de procesos, para los cuales no es suficiente un PI: • Cambios muy rápidos en la carga • Retardos de tiempo grandes entre la aplicación de la acción correctora y el aparecimiento de los resultados de dicha acción en la variable medida.

More Related