1 / 6

Making Molar Solutions

Making Molar Solutions. From Solids. What are molar solutions?. A molar solution is one that expresses “concentration” in moles per volume Usually the units are in mol/L mol/L can be abbreviated as M or [ ] Molar solutions are prepared using: a balance to weigh moles (as grams)

arlo
Download Presentation

Making Molar Solutions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Making Molar Solutions From Solids

  2. What are molar solutions? A molar solution is one that expresses “concentration” in moles per volume Usually the units are in mol/L mol/L can be abbreviated as M or [ ] Molar solutions are prepared using: a balance to weigh moles (as grams) a volumetric flask to measure litres L refers to entire volume, not water! Because the units are mol/L, we can use the equation M = n/L Alternatively, we can use the factor label method

  3. x 0.10 mol NaCl x 0.10 mol NaCl x 58.44 g NaCl 1 mol NaCl 1 L 1 L Calculations with molar solutions M=n/L, n = 0.10 M x 7.5 L = 0.75 mol Q: How many moles of NaCl are required to make 7.5 L of a 0.10 M solution? # mol NaCl = 7.5 L = 0.75 mol But in the lab we weigh grams not moles, so … Q: How many grams of NaCl are required to make 7.5 L of a 0.10 M solution? # g NaCl = 7.5 L =43.83 g Read pages 288 – 290. Do Q 19 - 22

  4. # g NaOH = x 0.125 mol NaOH x 40.00 g NaOH x 0.56 mol NaCl x 58.44 g NaCl x 0.355 g CO2 x 1 mol CO2 1 mol NaOH 44.0 g CO2 1 mol NaCl 1 L 1 L 1 L 3.00 L =15.0 g # g NaCl = 5.0 L = 164 g • 355 ppm = 355 mg/L or 0.355 g/L 1.00 L =.355 g # g CO2 = 0.355 g CO2 = 8.07 x 10–3 mol  1L = 8.07 x 10–3 mol/L • a) 235 g  3000 mL x 100% =7.83 % W/V • b) mol/L = 4.02 mol / 3.00 L = 1.34 mol/L

  5. Practice making molar solutions • Calculate # of grams required to make 100 mL of a 0.10 M solution of NaOH (see above). • Get volumetric flask, plastic bottle, 100 mL beaker, eyedropper. Rinse all with tap water. • Fill a beaker with distilled water. • Pour 20 - 30 mL of H2O from beaker into flask. • Weigh NaOH. Add it to flask. Do step 5 quickly. • Mix (by swirling) until the NaOH is dissolved. • Add distilled H2O to just below the colored line. • Add distilled H2O to the line using eyedropper. • Place solution in a bottle. Place label (tape) on bottle (name, date, chemical, molarity). Place bottle at front. Rinse & return equipment.

  6. For more lessons, visit www.chalkbored.com More Practice Questions 63 g 101 g • How many grams of nitric acid are present in 1.0 L of a 1.0 M HNO3 solution? 2. Calculate the number of grams needed to produce 1.00 L of these solutions: a) 1.00 M KNO3 b) 1.85 M H2SO4 c) 0.67 M KClO3 3. Calculate the # of grams needed to produce each: a) 0.20 L of 1.5 M KCl b) 0.160 L of 0.300 M HCl c) 0.20 L of 0.09 mol/L AgNO3 d) 250 mL of 3.1 mol/L BaCl2 4. Give the molarity of a solution containing 10 g of each solute in 2.5 L of solution: a)H2SO4 b)Ca(OH)2 181 g 82 g a) 22 g b) 1.75 g c) 3 g d)0.16kg 5. Describe how 100 mL of a 0.10 mol/L NaOH solution would be made. a) 0.041 mol/L b) 0.054 mol/L

More Related