slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Výukový materiál vytvořený v rámci projektu „EU peníze školám“ PowerPoint Presentation
Download Presentation
Výukový materiál vytvořený v rámci projektu „EU peníze školám“

Loading in 2 Seconds...

play fullscreen
1 / 24
anjolie-beard

Výukový materiál vytvořený v rámci projektu „EU peníze školám“ - PowerPoint PPT Presentation

85 Views
Download Presentation
Výukový materiál vytvořený v rámci projektu „EU peníze školám“
An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Výukový materiál vytvořený v rámci projektu „EU peníze školám“ • Škola: Střední škola právní – Právní akademie, s.r.o. • Typ šablony: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT • Projekt: CZ.1.07/1.5.00/34.0236 • Tematická oblast: Matematika • Autor: Mgr. František Buriánek • Téma: Lineární rovnice se dvěma absolutními hodnotami • Číslo materiálu: VY_32_INOVACE_MB_20_Lineární rovnice se dvěma absolutními hodnotami • Datum tvorby: 10.03.2013 • Anotace (ročník): Prezentace je určena pro žáky 1.ročníku SŠ,slouží k procvičení učiva a ověření znalostí žáků • Klíčová slova: Rovnice, absolutní hodnota

  2. Rovnice s absolutní hodnotou

  3. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12

  4. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 1. N.B. {3;-1}

  5. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • N.B. {3;-1} • Intervaly: • (-∞;-1> • <-1;3> • <3; ∞)

  6. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • (-∞;-1> (-10) (2x-6) (x+1)=12

  7. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • (-∞;-1> (-10) (2x-6) (x+1)=12 -26 -9

  8. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • (-∞;-1> (-10) (2x-6) (x+1)=12 -26 -9 -(2x-6)-(x+1)=12

  9. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • (-∞;-1> (-10) -(2x-6)-(x+1)=12 -2x+6-x-1=12 -3x=7 x=-7/3

  10. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • <-1;3> (0) (2x-6) (x+1)=12

  11. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • <-1;3> (0) (2x-6) (x+1)=12 -6 +1

  12. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • <-1;3> (0) (2x-6) (x+1)=12 -6 +1 -(2x-6)+ (x+1)=12

  13. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • <-1;3> (0) -(2x-6)+ (x+1)=12 -2x+6+x+1=12 -x = 5 x = -5

  14. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • <3; +∞ > (10) (2x-6) (x+1)=12

  15. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • <3; +∞ > (10) (2x-6) (x+1)=12 +14 +11

  16. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • <3; +∞ > (10) (2x-6) (x+1)=12 +14 +11 +(2x-6)+ (x+1)=12

  17. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • <3; +∞ > (10) +(2x-6)+ (x+1)=12 2x-6+x+1=12 3x=17 x = 17/3

  18. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • (-∞;-1>………x = -7/3 <-1;3>…………x = -5 <3;+∞)……….x = 17/3 K={-7/3;-5;17/3}

  19. Rovnice se dvěma abs. hodnotama |2x-6|+|x+1| = 12 • (-∞;-1>………x = -7/3 <-1;3>…………x = -5 <3;+∞)……….x = 17/3 P={-7/3;17/3}

  20. Rovnice se dvěma abs. hodnotama • |3x-6|+|x+4| = 12 • |3x+9|-|x-2| = 14 • -|x-6|-|2x+4| = 10 • -|2x-6|+|x+4| = 2

  21. Rovnice se dvěma abs. hodnotama • |3x-6|+|x+4| = 12 …..P{1;7/2} • |3x+9|-|x-2| = 14 • -|x-6|-|2x+4| = 10 • -|2x-6|+|x+4| = 2

  22. Rovnice se dvěma abs. hodnotama • |3x-6|+|x+4| = 12 …..P={1;7/2} • |3x+9|-|x-2| = 14 ….. P={-12,5;7/4} • -|x-6|-|2x+4| = 10 • -|2x-6|+|x+4| = 2

  23. Rovnice se dvěma abs. hodnotama • |3x-6|+|x+4| = 12 …..P={1;7/2} • |3x+9|-|x-2| = 14 ….. P={-12,5;7/4} • -|x-6|-|2x+4| = 10 …. P={} • -|2x-6|+|x+4| = 2

  24. Rovnice se dvěma abs. hodnotama • |3x-6|+|x+4| = 12 …..P={1;7/2} • |3x+9|-|x-2| = 14 ….. P={-12,5;7/4} • -|x-6|-|2x+4| = 10 …. P={} • -|2x-6|+|x+4| = 2 ….. P={8}