slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
II SUMMER SCHOOL IN MODERN MATHEMATICAL PHYSICS September 1-12, 2002 Kopaonik, (SERBIA) YUGOSLAVIA PowerPoint Presentation
Download Presentation
II SUMMER SCHOOL IN MODERN MATHEMATICAL PHYSICS September 1-12, 2002 Kopaonik, (SERBIA) YUGOSLAVIA

Loading in 2 Seconds...

  share
play fullscreen
1 / 24
anana

II SUMMER SCHOOL IN MODERN MATHEMATICAL PHYSICS September 1-12, 2002 Kopaonik, (SERBIA) YUGOSLAVIA - PowerPoint PPT Presentation

108 Views
Download Presentation
II SUMMER SCHOOL IN MODERN MATHEMATICAL PHYSICS September 1-12, 2002 Kopaonik, (SERBIA) YUGOSLAVIA
An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. I.Ya. Aref'eva Steklov Mathematical Institute Super String Field Theory and Vacuum Super String Field Theory II SUMMER SCHOOL INMODERN MATHEMATICAL PHYSICSSeptember 1-12, 2002Kopaonik, (SERBIA) YUGOSLAVIA

  2. Why String Field Theory? main motivations: gauge invariance principle behind string interactions non-perturbative phenomena • What we can calculate in String Field Theory? (analog of Higgs and Goldstone Phenomena) Condensation of Tachyon Brane tensions Rolling Tachyon • How we can do calculations in SFT? String Field Theory and Noncommutative Geometry String Field Theory and CFT

  3. Local space-time fields String Field Theory Second Quantized String Theory • Infinite number of local fields • String FieldA[X(σ)] - functional, or state inFockspace • Ghosts A[X(σ), c(σ), b (σ)] • Example:

  4. Pointwise multiplication of functions Multiplication of matrices Moyal product INTERACTION ? Associative Product of String Fields Examples of associative multiplications:

  5. Witten’s String Product Associative Product of String Fields -- Coordinate representation

  6. A - string field - BRST charge, derivation of the star algebra - inner product - associative non-commutative product - open string coupling constant SFT Action E.Witten (1986) Gaugetransformations:

  7. SFT Action is given

  8. Tachyon Condensation in SFT • Bosonic String - Tachyon Kostelecky,Samuel (1989)

  9. SFT Sen’s conjecture (1999) Vacuum Energy = Brane Tension Strings Branes

  10. = NO OPEN STRING EXCITATIONS CLOSED STRING EXCITATIONS Sen’s conjectures (1999)

  11. RollingTachyon Motivations:cosmology,... • Anharmonic oscillator • alpha’ corrections • p-adic strings I.Volovich(1987); P.Frampton, Nishino(1988); Brekke,Freund,Witten(1988), I.A,B.Dragovic,I.Volovich(1988) Moeller, Zwiebach, hep-th/0207107 p-adic and NC space-time I.A.,I.Volovich, 1990 • SFT Sen, Strings2002 I.A, A.Giryavets, A.Koshelev

  12. RollingTachyon Spatially homogeneous field configurations: E.O.M. where

  13. RollingTachyon Anharmonic oscillator approximation E.O.M.

  14. If resonance i.e. Anharmonic oscillator

  15. Two regimes: Rolling Tachyon Initial condition near the top Initial condition near the bottom

  16. Rolling Tachyon (bosonic case) Initial condition near the top Initial condition near the bottom

  17. Alpha ‘ corrections (boson case) • First order Solutions

  18. RollingTachyon E.O.M.

  19. RollingTachyon E.O.M. X-dependence

  20. RollingTachyon E.O.M. Two analogues: i) p-adic strings ii) non-commutative solitons in strong coupling regime Gopakumar, Minwalla,Strominger

  21. RollingTachyon Time evolution in the «sliver-tachyon» and p-adic strings p=2,3,5,.. (*) There is no solution such that with BUT this contradiction does not take place for (*) decreasing monotonically in time

  22. -- + + … Solutions to SFT E.O.M. Analog of Yang-Feldman eq. Resonance = Sen Problems!!!

  23. OUTLOOK String Field Theory L.Bonora Noncommutative Field Theories and (Super) String Field Theories,hep-th/0111208, I.A., D. Belov, A.Giryavets, A.Koshelev,P.Medvedev SuperString Field Theory • Cubic SSFT action 2-nd • Tachyon Condensation in SSFT • RollingTachyon 3-d • Vacuum SuperString Field Theory i)New BRST charge ii) Special solutions - sliver, lump, etc.: algebraic; surface states; Moyal representation