1 / 23

A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface. Wei-Ping Hu ( 胡維平 ) Department of Chemistry and Biochemistry National Chung Cheng University. I. Introduction. H full Y God = E exact Y God Y (FCI/CBS) = Y (FCC/CBS) = Y God

amal
Download Presentation

A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface Wei-Ping Hu (胡維平) Department of Chemistry and Biochemistry National Chung Cheng University

  2. I. Introduction HfullYGod = EexactYGod Y(FCI/CBS) = Y(FCC/CBS) = YGod E (FCI/CBS) = E (FCC/CBS) = Eexact QCISD(T), CCSD(T) Scale as N 7 Multilevel Methods:EexactE(LL/IBS) + DEHLC + DECB

  3. Currently Used Multilevel Methods: G2, G3, CBS, SAC, G3S, MCG3 HF, MP2, MP4, QCISD(T), empirical HLC 6-31G(d), 6-311G(d,p), 6-311+G(d,p) 6-311+G(2df,p), 6-311+G(3df,2p), G3Large Target Accuracy: QCISD(T)/6-311+G(3df,2p), QCISD(T)/G3Large New Method: (no empirical parameters, Dynamics Calc.) Target Accuracy:QCISD(T)/aug-cc-pVT(Q)Z Dunning’s Corrlation Consistent Basis Sets Basis set extension: MP2, extrapolation

  4. 簡稱 • QCISD(T)/cc-pVDZ方法 : QT2 • QCISD(T)/cc-pVTZ方法: QT3 • 估計 QCISD(T)/cc-pVTZ能量之方法 :EQT3 • 估計 QCISD(T)/cc-pVQZ能量之方法 : EQT4 • 估計 QCISD(T)/cc-pVnZ能量之方法 : EQTn • 估計 QCISD(T)/aug-cc-pVTZ能量之方法 : E(A)QT3+ • 估計 QCISD(T)/aug-cc-pVQZ能量之方法 : E(A)QT4+

  5. II. Methods EQT3+ = EQT3 +DE+ EQT3 = QT2 +DETZ DETZ = MP2/cc-pVTZ - MP2/cc-pVDZ DEQZ = MP2/cc-pVQZ - MP2/cc-pVTZ DE+ = MP2/aug-cc-pVTZ - MP2/cc-pVTZ EQT4+ = EQT4 +DE+ EQT4 = EQT3 +DEQZ AQT3+ = QT3 +DE+ AQT4+ = AQT3+ +DEQZ

  6. E(A)QTn 方法 EQTn = -76.376 (H2O) f (n) = ae-bn + c 以外插的方法估計到無窮大basis set時的能量。以QT2(n = 2), EQT3(n = 3), EQT4(n = 4)來估計EQTn的能量[ EQTn = c , as n = ∞ ]。

  7. III. Results and Discussion • EQT4 及EQTn 所需的計算時間相同,但 EQTn因利用外插的方法使基底函數趨近於無窮大,而使其RMSE 較 EQT4 下降了0.6kcal/mol 左右。 • aJ. Phys. Chem.1999, 103, 3139 • 在本研究中EQTn 方法準確度與CCSD(T)-SAC/pTZ 相當,而其所需計算時間較 CCSD(T)-SAC/pTZ方法少。 Table 1 : 原子化能量之誤差(kcal/mol)

  8. 在原子化能量計算中我們可得知,single-level中以MP2/cc-pVTZ方法所得的MUE及RMSE都比以MP2/cc-pVDZ方法所得的約小14.0kcal/mol左右,而QT2方法並沒有比MP2方法好。在原子化能量計算中我們可得知,single-level中以MP2/cc-pVTZ方法所得的MUE及RMSE都比以MP2/cc-pVDZ方法所得的約小14.0kcal/mol左右,而QT2方法並沒有比MP2方法好。 • 在multi-level中基底函數為triple-zeta時,擴散函數的貢獻相當重要,而基底函數為quadruple-zeta時,擴散函數的貢獻較少。

  9. Table 2: 文獻上記載之反應能障最佳估計值(kcal/mol) J. Phys. Chem. A. 2001, 105, 2936

  10. 以EQT3+,EQT4, EQT4+ 及EQTn 等四種方法所估計出來的DV≠值與文獻上認為最準確的值比較其 MUE 都在1.0 kcal/mol以下,而RMSE 也都約1.0 kcal/mol左右,table 2 其誤差範圍在1.0 kcal/mol 左右,所以本研究中的multilevel 方法以及文獻上的G3S 和MMCG3方法預測反應能障的準確度都相當高。 Table 3 : 能量障礙之誤差(kcal/mol) • G3S 是 Donald G. Truhlar 等人發明的方法,其將 G3 方法中的 HLC 修正省略,而加入半經驗參數來加以校正,而 Larry A. Curtiss 等人發明的 MMCG3 方法與 G3S 類似。

  11. 使用multi-level進行位能曲線的計算 我們使用EQT3+、EQT4+ 、 EQTn 、 AQT4+ 、AQTn、PDG2、G3S與MMCG3等multi-level方法計算H2+H、OH+H2、CH4+OH、NH3+OH、以及H2S+H之位能曲線,比較各種方法所得之能量障礙與能障半高寬(S1/2) ,並與文獻值比較。以上五種反應路徑之幾何結構計算是使用: H2+H OH+H2 CH4+OH NH3+OH MP2/6-311+G** H2S+H QCISD(T)/6-311+G**

  12. H2+H

  13. OH+H2

  14. CH4+OH

  15. NH3+OH

  16. H2S+H

  17. 我們使用的multi-level方法所算出來的ΔV‡與文獻值的誤 差約在0.1~1.9kcal/mol左右,幾乎都比G2與G3系列的方 法良好。 • 實際使用single-level的結果與我們所使用之方法的結果很 接近,相差大約0.2~1.5kcal/mol左右。 • ΔV‡會隨著計算level提升、加大basis set,以及加入diffuse function而降低﹔加入diffuse function的下降量則特 別顯著。 • 在S1/2方面,加大basis set的改變與實際做single-level的趨 勢相同,但是加入diffuse function之後卻呈現不規則變化。 造成這種情況的原因是由於MP2與QCISD(T)兩種計算level在計算位能曲線時,有不同的趨勢所導致。

  18. 感 謝 國科會對本研究計畫的經費補助 李宗憓、牟君浩 中國化學會 國立中正大學化學暨生物化學系

More Related