106 Views

Download Presentation
##### One Form

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -

**Map F**Goes from manifold MR All points in M go to R Smooth, i.e. differentiable Function f(x, y) Map UR Open set UM Region U is diffeomorphic to E2 (or En) Scalar Field**One-Form**• The scalar field F is differentiable. • Expressed in local variables • f associated with a chart • Need knowledge of the coordinates • from the local chart f • short cut is to use F. • The entity dF is an example of a one-form.**The derivative of the one-form can be written as an**operator. Chain rule applied to x, y A point can be described with other coordinates. Partial derivatives affected by chain rule Write with constants reflecting a transformation Operator and Coordinates**The partial derivatives point along coordinate lines.**Not the same as the coordinates. Partial Derivative y y = const. x x = const. Y Y = const. X = const. X**Vector Field**• General form of differential operator: • Smooth functions A, B • Independent of coordinate • Different functions a, b • Transition between charts • This operator is a vector field. • Acts on a scalar field • Measures change in a direction F(p’) x p’ F(p) p**Inner Product**• The one-form carries information about a scalar field. • Components for the terms • The vector field describes how a scalar field changes. • The inner product gives a specific scalar value. • Express with components • Or without**Three Laws**• Associativity of addition • Associativity of multiplication • Identity of a constant k = const.**Vector field on Q**Contravariant vectors Components with superscripts Transformation rule: One form on Q Covariant vectors Components with subscripts Dual Spaces next