generator motor dan transformator n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Generator, Motor dan Transformator PowerPoint Presentation
Download Presentation
Generator, Motor dan Transformator

Loading in 2 Seconds...

play fullscreen
1 / 67

Generator, Motor dan Transformator - PowerPoint PPT Presentation


  • 372 Views
  • Uploaded on

Generator, Motor dan Transformator. Dasar Teknik Elektro Pertemuan ke 7. Generator. Generator adalah suatu sistem yang berfungsi untuk mengubah tenaga mekanik menjadi tenaga listrik Bagian utama dari generator adalah : Rotor ( bagian yang berputar ) Stator ( bagian yang diam ).

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Generator, Motor dan Transformator' - akiva


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
generator motor dan transformator

Generator, Motor danTransformator

DasarTeknikElektro

Pertemuanke 7

generator
Generator
  • Generator adalahsuatusistemyang berfungsiuntukmengubahtenagamekanikmenjaditenagalistrik
  • Bagianutamadari generator adalah :
    • Rotor (bagian yang berputar)
    • Stator (bagian yang diam)

DC

AC

rotor dan stator
ROTOR dan STATOR
  • Rotor, mempunyaibagian-bagian yang terdiridari :
    • poros,
    • inti,
    • kumparan,
    • cincingeser, dan
    • sikat-sikat.
rotor dan stator1
ROTOR dan STATOR
  • Stator, mempunyaibagian-bagianterdiridari :
    • rangka stator yang merupakansalahsatubagianutamadari generator yang terbuatdaribesituangdaninimerupakanrumahdarisemuabagian-bagian generator,
    • kutubutamabesertabelitannya,
    • kutub-kutubpembantubesertabelitannya, dan
    • bantalan-bantalanporos.
jenis generator
JENIS GENERATOR
  • Generator AC
    • Generator arusbolak-balikyaitu generator dimanategangan yang dihasilkan (tegangan out put ) berupateganganbolak-balik.
  • Generator DC
    • Generator arussearahyaitu generator dimanategangan yang dihasilkan (tegangan out put) berupategangansearah, karenadidalamnyaterdapatsistempenyearahan yang dilakukanbisaberupaolehkomutatorataumenggunakandioda.
generator ac
Generator AC

Berdasarkansistempembangkitannya generator AC dapatdibagimenjadi 2 yaitu :

  • Generator 1 fasaGenerator yang sistemlilitanyahanyaterdiridarisatukumpulankumparan yang hanyadilukiskandengansatugaris. Ujung kumparanataufasa yang satudijelaskandenganhurufbesar X danujung yang satulagidenganhuruf U.
  • Generator 3 fasaGenerator yang sistemlilitanyahanyaterdiridaritigakumpulankumparan. Kumparantersebutmasing-masingdinamakanlilitanfasa. Jadipadastatornyaadalilitanfasa yang kesatuujungnyadiberitanda U – X; lilitanfasa yang keduaujungnyadiberitandadenganhuruf V – Y danakhirnyaujunglilitanfasa yang ketigadiberitandadenganhuruf W – Z.
generator ac1
Generator AC
  • Kecepatandanjumlahkutubderajat ac menentukanfrekuensitegangan yang dibangkitkan.
  • Jika generator mempunyaiduakutub ( utaradanselatan ) dankumparanberputarpadakecepatansatuputaranperdetik, makafrekuensiakanberubahmanjadisiklus per detik.
  • Rumusuntukmementukanfrekuensi generator adalah :

f = pn/120

f = frekuensi

n = kecepatan rotor per menit

p = jumlahkutub

a simple ac generator
A Simple AC Generator
  • We noted earlier that Faraday’s law dictates that if a coil of N turns experiences a change in magnetic flux, then the induced voltage V is given by
  • If a coil of area A rotates with respect to a field B, and if at a particular time it is at an angle  to the field, then the flux linking the coil is BAcos, and the rate of change of flux is given by
slide12
Wires connected tothe rotating coilwould get twisted
  • Therefore we usecircular slip ringswith slidingcontacts calledbrushes
ac generators or alternators
AC Generators or Alternators
  • Alternators do not require commutation
    • this allows a simpler construction
    • the field coils are made to rotate while the armature windings are stationary
      • Note: the armature windings are those that produce the output
    • thus the large heavy armature windings are in the stator
    • the lighter field coils are mounted on the rotor and direct current is fed to these by a set of slip rings
slide15
As with DC generators multiple poles and sets of windings are used to improve efficiency
    • sometimes three sets of armature windingsare spaced 120 apart around the stator to forma three-phase generator
  • The e.m.f. produced is in sync with rotation of the rotor so this is a synchronous generator
    • if the generator has a single set of poles the output frequency is equal to the rotation frequency
    • if additional pole-pairs are used the frequency is increased accordingly
slide16
Example – see Example 23.2 from course text

A four-pole alternator is required to operate at 60 Hz. What is the required rotation speed?

A four-pole alternator has two pole pairs. Therefore the output frequency is twice the rotation speed. Therefore to operate at 60Hz, the required speed must be 60/2 = 30Hz. This is equivalent to 30  60 = 1800 rpm.

generator dc
Generator DC

Berdasarkansistempembangkitannya generator AC dapatdibagimenjadi 2 yaitu :

  • Generator 1 fasaGenerator yang sistemlilitanyahanyaterdiridarisatukumpulankumparan yang hanyadilukiskandengansatugaris. Ujung kumparanataufasa yang satudijelaskandenganhurufbesar X danujung yang satulagidenganhuruf U.
  • Generator 3 fasaGenerator yang sistemlilitanyahanyaterdiridaritigakumpulankumparan. Kumparantersebutmasing-masingdinamakanlilitanfasa. Jadipadastatornyaadalilitanfasa yang kesatuujungnyadiberitanda U – X; lilitanfasa yang keduaujungnyadiberitandadenganhuruf V – Y danakhirnyaujunglilitanfasa yang ketigadiberitandadenganhuruf W – Z.
a simple dc generator
A Simple DC Generator
  • The alternating signal from the earlier AC generator could be converted to DC using a rectifier
  • A more efficient approach is to replace the two slip rings with a single split slip ring called a commutator
    • this is arranged so that connections to the coil are reversed as the voltage from the coil changes polarity
    • hence the voltage across the brushes is of a single polarity
    • adding additional coils produces a more constant output
slide21
The ripple can be further reduced by the use of a cylindrical iron core and by shaping the pole pieces
    • this produces anapproximatelyuniform field in thenarrow air gap
    • the arrangementof coils and coreis known as thearmature
dc generators or dynamos
DC Generators or Dynamos
  • Practical DC generators or dynamos can take a number of forms depending on how the magnetic field is produced
    • can use a permanent magnet
    • more often it is generated electrically using field coils
      • current in the field coilscan come from an external supply
        • this is known as a separately excited generator
      • but usually the field coils are driven from the generator output
        • this is called a self-excited generator
    • often use multiple poles held in place by a steel tube called the stator
slide24
Field coil excitation
    • sometimes the field coils are connected in series with the armature, sometimes in parallel (shunt) and sometimes a combination of the two (compound)
    • these different formsproduce slightlydifferentcharacteristics
    • diagram hereshows ashunt-woundgenerator
slide25
DC generator characteristics
    • vary slightly between forms
    • examples shown here are for a shunt-wound generator
motor
MOTOR

Motor dibagimenjadiduajenis :

  • Motor AC
  • Motor DC
ac motors

23.7

AC Motors
  • AC motors can be divided into two main forms:
    • synchronous motors
    • induction motors
  • High-power versions of either type invariably operate from a three-phase supply, but single-phase versions of each are also widely used – particularly in a domestic setting
slide28
Synchronous motors
    • just as a DC generator can be used as a DC motor, so AC generators (or alternators) can be used as synchronous AC motors
    • three phase motorsuse three sets of stator coils
      • the rotating magnetic field drags the rotor around with it
    • single phase motors require some starting mechanism
    • torque is only produced when the rotor is in sync with the rotating magnetic field
      • notself-starting – may be configured as an induction motor until its gets up to speed, then becomes a synchronous motor
slide29
Induction motors
    • these are perhaps the most important form of AC motor
    • rather than use slip rings to pass current to the field coils in the rotor, current is induced in the rotor by transformer action
    • the stator is similar to that in a synchronous motor
    • the rotor is simply a set of parallel conductors shorted together at either end by two conducting rings
slide31
In a three-phase induction motor the three phases produce a rotating magnetic field (as in a three-phase synchronous motor)
    • a stationary conductor will see a varying magnetic field and this will induce a current
    • current is induced in the field coils in the same way that current is induced in the secondary of a transformer
    • this current turns the rotor into an electromagnet which is dragged around by the rotating magnetic field
    • the rotor always goes slightly slower than the magnetic field – this is the slip of the motor
slide32
In single-phase induction motors other techniques must be used to produce the rotating magnetic field
    • various techniques are used leading to various forms of motor such as
      • capacitor motors
      • shaded-pole motors
    • such motors are inexpensive and are widely used in domestic applications
dc motors
DC Motors
  • When current flows in a conductor it produces a magnetic field about it - as shown in (a) below
    • when the current-carrying conductor is within an externally generated magnetic field, the fields interact and a force is exerted on the conductor - as in (b)
slide34
Therefore if a conductor lies within a magnetic field:
    • motion of the conductor produces an electric current
    • an electric current in the conductor will generate motion
  • The reciprocal nature of this relationship means that, for example, the DC generator above will function as a DC motor
    • although machines designed as motors are more efficient in this role
  • Thus the four-pole DC generator shown earlier could equally well be a four-pole DC motor
slide35
DC motor characteristics
    • many forms – each with slightly different characteristics
    • again can be permanent magnet, or series-wound, shunt-wound or compound wound
    • figure below shows a shunt-wound DC motor
universal motors
Universal Motors
  • While most motors operate from either AC or DC, some can operate from either
  • These are universal motors and resemble series-wound DC motors, but are designed for both AC and DC operation
    • typically operate at high speed (usually > 10,000 rpm)
    • offer high power-to-weight ratio
    • ideal for portable equipment such as hand drills and vacuum cleaners
electrical machines a summary
Electrical Machines – A Summary
  • Power generation is dominated by AC machines
    • range from automotive alternators to the synchronous generators used in power stations
    • efficiency increases with size (up to 98%)
  • Both DC and AC motors are used
    • high-power motors are usually AC, three-phase
    • domestic applications often use single-phase induction motors
    • DC motors are useful in control applications
key points
Key Points
  • Electrical machines include both generators and motors
  • Motors can usually function as generators, and vice versa
  • Electrical machines can be divided into AC and DC forms
  • The rotation of a coil in a uniform magnetic field produces a sinusoidal e.m.f. This is the basis of an AC generator
  • A commutator can be used to produce a DC generator
  • The magnetic field in an electrical machine is normally produced electrically using field coils
  • DC motors are often similar in form to DC generators
  • Some forms of AC generator can also be used as motors
  • The most widely used form of AC motor is the induction motor
pengertian transformator
Pengertian Transformator
  • Alat listrik yang dapat memindahkan energi listrik dengan merubah tingkat tegangan dari suatu rangkaian listrik ke rangkaian listrik lain melalui prinsip induksi magnetiktanpamerubahfrekuensi.
inti besi1
INTI BESI

Intibesiberfungsiuntukmempermudahjalanfluksi, yang ditimbulkanoleharuslistrik yang melaluikumparan. Padatransformator, intibesidibuatdarilempengan-lempenganbesitipis yang berisolasi, untukmengurangipanas (sebagairugi-rugibesi) yang ditimbulkanoleh “Eddy Current”

kumparan1
KUMPARAN

Beberapalilitankawatberisolasiakanmembentuksuatukumparan. Kumparantersebutdi-isolasi, baikterhadapintibesimaupunterhadapkumparan lain disebelahnyadenganisolasipadat, sepertikarton, pertinax.

minyak transformator1
MINYAK TRANSFORMATOR

Sebagianbesartrafotenaga, kumparan-kumparandanintinyadirendamdalamminyaktrafo, terutamatrafo-trafotenaga yang berkapasitasbesar, karenaminyaktrafomempunyaisifatsebagai media pemindahpanas (disirkulasi), danbersifatsebagaiisolasi (dayategangantembustinggi), sehinggaminyaktrafotersebutberfungsisebagai media pendingindanisolasi.

tangki
TANGKI

Padaumumnyabagian-bagiandaritrafo yang terendamminyaktrafoberada (ditempatkan) dalamtangki. Untukmenampungpemuaianminyaktrafo, tangkidilengkapidengankonservator.

bushing1
BUSHING

Hubunganantarakumparantrafokejaringanluarmelaluisebuahbushing, yaitusebuahkonduktor yang diselubungioleh isolator, yang sekaligusberfungsisebagaipenyekatantarakonduktortersebutdengantangkitrafo.

peralatan bantu
PERALATAN BANTU

PENDINGIN

TAP CHANGER

ALAT PERNAPASAN

PENGAMAN

pendingin
PENDINGIN

Padaintibesidankumparan-kumparanakantimbulpanas, akibatrugi-rugibesidanrugi-rugitembaga. Bilapanastersebutmengakibatkankenaikansuhu yang berlebihan, akanmerusakisolasi (didalamtrafo), makauntukmengurangikenaikansuhu yang berlebihantersebuttrafoperludilengkapidenganalat/systempendinginuntukmenyalurkanpanaskeluartrafo. Media yang dipakaipada system pendingindapatberupa:udara/gas, minyak, danair.Sedangkanpengalirannya (sirkulasi) dapatdengancaraalamiah (natural) atautekanan/paksaan.

tap changer
TAP CHANGER

Merupakanalatpengubahperbandingantransformasiuntukmendapatkanteganganoperasisisisekunder yang konstan/stabil (diinginkan) dariteganganjaringan/sisi primer yang berubah-ubah. Tap changer dapatdilakukanbaikdalamkeadaanberbeban (on-load) ataudalamkeadaantakberbeban (off load) tergantungpadajenisnya.

alat pernafasan
ALAT PERNAFASAN

Akibatpengaruhnaikturunnyabebantransformatormaupunsuhuudaraluar, makasuhuminyakakanberubah-ubahmengikutikeadaantersebut. Bilasuhuminyaktinggi, minyakakanmemuaidanmendesakudaradiataspermukaanminyakkeluardaridalamtangki, sebaliknyaapabilasuhuturun, minyakmenyusutmakaudaraluarakanmasukkedalamtangki.

pengaman
PENGAMAN

ReleBucholzuntukmendeteksidanmengamankanterhadapgangguandidalamtrafo yang menimbulkan gas

pengaman1
PENGAMAN
  • ReleDifferensialpengamantrafodarigangguanhubungsingkatdidalamtrafo
prinsip kerja tansformator
PRINSIP KERJA TANSFORMATOR
  • Keadaaan Transformator Tanpa beban

Transformatortanpabeban

Vektortransformatortanpabeban

keadaan tanpa beban
KeadaanTanpaBeban
  • Bila kumparan primer suatu transformator dihubungkan dengan sumber tegangan V1 yang sinusoid, akan mengalirlah arus primer Io yang juga sinusoid dan dengan mengannggap belitan N1 reaktif murni, Io akan tertinggal 90o dari V1 (lihat gambar ). Arus primer Io menimbulkanfluks (f) yang sefasadanjugaberbentuk sinusoid.
  • f = fmaks sin wt
keadaan tanpa beban1
KeadaanTanpaBeban
  • Fluks yang sinusoid ini akan menghasilkan tegangan induksi e1 (Hukum Faraday). Fluks yang berubah-ubah memotong suatu kumparan maka pada kumparan tersebut akan di induksikan suatu tegangan listrik :

(tertinggal 90odarif)

Hargaefektifnya

keadaan tanpa beban2
KeadaanTanpaBeban
  • Pada rangkaian sekunder, fluks (f) bersama tadi menimbulkan

Denganmengabaikanrugitahanandanadanyafluksbocor,

a = perbandingantransformasi

Dalam hai ini tegangan E1 mempunyai kebesaran yang sama tetapi berlawanan arah dengan tegangan sumber V1.

keadaan tanpa beban3
KeadaanTanpaBeban

Arus Penguat

  • Arus primer Io yang mengalir pada saat kumparan sekunder tidak dibebani disebut arus penguat. Dalam kenyataannya arus primer Io bukanlah merupakan arus induktif murni, hingga ia terdiri atas dua komponen:

(1)   Komponen arus pemagnetan IM, yang menghasilkan fluks (f).

(2)   Komponen arus rugi tembaga IC, menyatakan daya yang hilang akibat adanya rugi histeris dan ‘arus eddy’.  IC sefasa dengan  V1, dengan demikian hasil perkaliannya (IC x V1) merupakan daya (watt) yang hilang

Vektorhubungan fasor Io, IM dan IC

RangkainpenggantiIo, IM dan IC

keadaaan transformator berbeban
Keadaaan Transformator Berbeban
  • Apabila kumparan sekunder dihubungkan dengan beban ZL, I2 mengalir pada kumparan sekunder, di mana I2 = V2/ZL .
keadaaan transformator berbeban1
Keadaaan Transformator Berbeban
  • Arus beban I2 ini akan menimbulkan gaya gerak magnet (ggm) N2 I2 yang cenderung menentang fluks (f) bersama yang telah ada akibat arus pemagnetan IM. Agar fluks bersama itu tidak berubah nilainya, pada kumparan primer harus mengalir arus I’2, yang menentang fluks yang dibangkitkan oleh arus beban I2, hingga keseluruhan arus yang mengalir pada primer menjadi :
keadaaan transformator berbeban2
Keadaaan Transformator Berbeban
  • Bila rugi besi diabaikan (IC diabaikan) maka Io = IM

I1 = IM + I’2

  • Untuk menjaga agar fluks tetap tidak berubah sebesar ggm yang dihasilkan oleh arus pemagnetan IM saja, berlaku hubungan :

N1IM = N1I1 – N2I2

N1IM = N­1(IM + I’2) – N2I2

Sehingga

N1I’2 = N2I2

  •  Karena nilai IM dianggap kecil maka I’2 = I1

N1I1 = N2I2atau I1/I2 = N2/N1