slide1
Download
Skip this Video
Download Presentation
Materials and Methods

Loading in 2 Seconds...

play fullscreen
1 / 1

Materials and Methods - PowerPoint PPT Presentation


  • 516 Views
  • Uploaded on

Eliminating codling moth from cherries James D. Hansen Research Entomologist USDA-ARS Wapato, WA Juming Tang Food Engineer WSU Pullman, WA Stephen R. Drake Research Horticulturist USDA-ARS Wenatchee, WA Elizabeth J. Mitcham Postharvest Physiologist UC-Davis Davis, CA Objectives

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Materials and Methods' - adamdaniel


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1
Eliminating codling moth from cherries

James D. Hansen

Research Entomologist

USDA-ARS

Wapato, WA

Juming Tang

Food Engineer

WSU

Pullman, WA

Stephen R. Drake

Research Horticulturist

USDA-ARS

Wenatchee, WA

Elizabeth J. Mitcham

Postharvest Physiologist

UC-Davis

Davis, CA

Objectives

1. Improve radio frequency (thermal) treatment

2. Conduct large scale test for Japan

3. Test against cherry fruit fly

Materials and Methods

Discussion

A. Individual immature ‘Bing’ cherries infested with 3rd instar codling moth

1. California cherries

a. Infested cherries treated cold

b. Submerse in pretreatment baths at 43°C (109°F) for 6 min (Fig. 1)

c. Treat by submersion in bath

or under shower (Fig. 2) for durations at set temperatures

1. Warm water treatments can be developed against the codling moth.

2. These treatments can be adapted to different types of local packing house operations.

3. Treatment times are short enough to allow for continuous operations.

4. Initial quality tests suggest that there is much flexibility in the treatments.

5. Fruit size seems to be an important component for the success of the treatments.

d. Evaluate for efficacy

2. Washington cherries

a. Infested fruits treated at room temperature

b. No pretreatment bath

c. Direct submersion in bath (only) for durations at set temperatures (Fig. 3)

d. Evaluate for efficacy

B. Evaluate for fruit quality using treatment methods for California and Washington cherries

Results

6. Future research should examine the effect of variables, such as fruit size and cultivar type, on treatment efficacy and fruit quality.

7. The application of these treatments to other pests, such as the cherry fruit fly, should also be explored.

8. Because of the simplicity of these treatments, they should be readily acquired by the packing houses once these treatments have been accepted by regulatory agencies.

1. Fruit core temperatures increase at the same rate for both bath and shower (Fig. 4).

2. For California cherries, complete efficacy at the lowest temperature exposures was 8 min at 48°C (118°F) to 4 min at 50°C (122°F) for baths (Fig. 4) and showers (Fig. 6).

3. For Washington cherries, complete efficacy at the lowest temperature exposures was 6 min at 50°C (122°F)

to 4 min at 54°C (129°F) (Fig. 7).

4. Treatment efficacy is below that of fruit quality for California cherries (Fig. 8) and Washington cherries

(Fig. 7).

5. Hydrocooling is for maintaining fruit quality and does not contribute to treatment efficacy. The brief cold storage of California cherries had no impact on larval survival.

Acknowledgements

Support for this research was provided by the Washington Tree Fruit Research Commission, Oregon Sweet Cherry Commission, and the California Cherry Advisory Board

We thank the following for their contributions: D. Albano, B. Biasi, B. Blaisdell, A. Bosma, J. Bower, T. Gorrebeeck, M. Heidt, G. Scaife, S. Wang, M. Watkins, and E. Yates

ad