Materials and Methods - PowerPoint PPT Presentation

adamdaniel
slide1 l.
Skip this Video
Loading SlideShow in 5 Seconds..
Materials and Methods PowerPoint Presentation
Download Presentation
Materials and Methods

play fullscreen
1 / 1
Download Presentation
Materials and Methods
528 Views
Download Presentation

Materials and Methods

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Eliminating codling moth from cherries James D. Hansen Research Entomologist USDA-ARS Wapato, WA Juming Tang Food Engineer WSU Pullman, WA Stephen R. Drake Research Horticulturist USDA-ARS Wenatchee, WA Elizabeth J. Mitcham Postharvest Physiologist UC-Davis Davis, CA Objectives 1. Improve radio frequency (thermal) treatment 2. Conduct large scale test for Japan 3. Test against cherry fruit fly Materials and Methods Discussion A. Individual immature ‘Bing’ cherries infested with 3rd instar codling moth 1. California cherries a. Infested cherries treated cold b. Submerse in pretreatment baths at 43°C (109°F) for 6 min (Fig. 1) c. Treat by submersion in bath or under shower (Fig. 2) for durations at set temperatures 1. Warm water treatments can be developed against the codling moth. 2. These treatments can be adapted to different types of local packing house operations. 3. Treatment times are short enough to allow for continuous operations. 4. Initial quality tests suggest that there is much flexibility in the treatments. 5. Fruit size seems to be an important component for the success of the treatments. d. Evaluate for efficacy 2. Washington cherries a. Infested fruits treated at room temperature b. No pretreatment bath c. Direct submersion in bath (only) for durations at set temperatures (Fig. 3) d. Evaluate for efficacy B. Evaluate for fruit quality using treatment methods for California and Washington cherries Results 6. Future research should examine the effect of variables, such as fruit size and cultivar type, on treatment efficacy and fruit quality. 7. The application of these treatments to other pests, such as the cherry fruit fly, should also be explored. 8. Because of the simplicity of these treatments, they should be readily acquired by the packing houses once these treatments have been accepted by regulatory agencies. 1. Fruit core temperatures increase at the same rate for both bath and shower (Fig. 4). 2. For California cherries, complete efficacy at the lowest temperature exposures was 8 min at 48°C (118°F) to 4 min at 50°C (122°F) for baths (Fig. 4) and showers (Fig. 6). 3. For Washington cherries, complete efficacy at the lowest temperature exposures was 6 min at 50°C (122°F) to 4 min at 54°C (129°F) (Fig. 7). 4. Treatment efficacy is below that of fruit quality for California cherries (Fig. 8) and Washington cherries (Fig. 7). 5. Hydrocooling is for maintaining fruit quality and does not contribute to treatment efficacy. The brief cold storage of California cherries had no impact on larval survival. Acknowledgements Support for this research was provided by the Washington Tree Fruit Research Commission, Oregon Sweet Cherry Commission, and the California Cherry Advisory Board We thank the following for their contributions: D. Albano, B. Biasi, B. Blaisdell, A. Bosma, J. Bower, T. Gorrebeeck, M. Heidt, G. Scaife, S. Wang, M. Watkins, and E. Yates