1 / 50

II ELEKTRISKAIS POTENCIĀLS

II ELEKTRISKAIS POTENCIĀLS. 2.1. Elektriskā lauka intensitātes E līnijas integrālis. Lauka intensitātes vektora līnijas integrālis pa brīvi izvēlētu ceļu starp punktiem P 1 un P 2 līdzinās (sk. zīm):. Nekustīgu lādiņu elektriskajā laukā E līnijas integrālis nav atkarīgs no

abiola
Download Presentation

II ELEKTRISKAIS POTENCIĀLS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IIELEKTRISKAIS POTENCIĀLS

  2. 2.1. Elektriskā lauka intensitātes E līnijas integrālis Lauka intensitātes vektora līnijas integrālis pa brīvi izvēlētu ceļu starp punktiem P1 un P2 līdzinās (sk. zīm): Ņ.Nadežņikovs Elektriskais potenciāls

  3. Nekustīgu lādiņu elektriskajā laukā E līnijas integrālis nav atkarīgs no integrēšanas ceļa, kas savieno punktus P1 un P2. Ņ.Nadežņikovs Elektriskais potenciāls

  4. 2.2. Elektriskā lauka potenciāls Elektrostatisku lauku var raksturot ar skalāru lielumu - skalāro elektriskā lauka potenciālu φ.Potenciāls φ kādā lauka punktā ir vienāds ar darbu, ko veiktu lauks,pārvietojot vienu vienību lielu pozitīvu lādiņu no apskatāmā punkta līdz punktam, kurā potenciāls pieņemts vienāds ar nulli. Ņ.Nadežņikovs Elektriskais potenciāls

  5. Divu punktu potenciālu starpību sauc par spriegumu. Kā izriet no definīcijas (enerģija uz lādiņa vienību), potenciāla un sprieguma vienība ir volts (V). 1 J/C = 1 (V∙A∙s)/(A∙s) = 1 V. Divu punktu P1 un P2 potenciālu starpību var atrast ar līnijas integrāļa palīdzību: Ņ.Nadežņikovs Elektriskais potenciāls

  6. Ja punkta P1 potenciāls ir vienāds ar nulli, punkta P2 potenciāls Ņ.Nadežņikovs Elektriskais potenciāls

  7. Ja integrēšana notiek pa noslēgtu kontūru L, kad ceļa beigu punkts sakrīt ar sākuma punktu, tad Ņ.Nadežņikovs Elektriskais potenciāls

  8. 2.3. Skalāras funkcijas gradients Pēc zināmās lauka intensitātes E var noteikt lauka potenciālu φ un, otrādi, pēc zināmā lauka potenciāla – intensitāti. Lauka intensitāte ir potenciālās funkcijas atvasinājums. Dota nepārtraukti diferencējama koordinātu funkcija φ(x,y,z). Ņ.Nadežņikovs Elektriskais potenciāls

  9. Zinot šīs funkcija parciālos atvasinājumus katrā lauka punktā var uzzīmēt vektoru, kura x, y un z komponentes ir vienādas ar attiecīgajiem parciālajiem atvasinājumiem. Ņ.Nadežņikovs Elektriskais potenciāls

  10. Šo vektoru sauc par funkcijas φ gradientu un apzīmē ar “grad φ” vai “ (lasa nabla fi): ir vektors, kas izsaka funkcijas φ izmaiņu punkta (x,y,z) apkārtnē. Ņ.Nadežņikovs Elektriskais potenciāls

  11. Vektors norāda to virzienu, kurā funkcija pieaug visstraujāk. Ņ.Nadežņikovs Elektriskais potenciāls

  12. 2.4. Lauka intensitātes E iegūšana no potenciāla φ Apskata potenciāla φ lielumu divos tuvu esošos punktos (x,y,z) un (x+dx, y+dy, z+dz). Funkcijas φ izmaiņa No potenciāla definīcijas dφ = -E∙dl. Ņ.Nadežņikovs Elektriskais potenciāls

  13. dl var izteikt ar tā projekcijām dl = x0dx+y0dy+z0dz. JaEpielīdzina (- ), abas potenciāla izteiksmes iznāk vienādas. Tātad elektriskā lauka intensitāte līdzinās negatīvam lauka potenciāla gradientam E = - grad φ. Ņ.Nadežņikovs Elektriskais potenciāls

  14. Ņemot vērā, ka skalāri reizinot: x0∙x0 = 1; x0∙y0 = 0; x0∙z0 = 0; y0∙y0 = 1; y0∙z0 = 0; z0∙z0 = 1, iegūstam Ņ.Nadežņikovs Elektriskais potenciāls

  15. 2.6. Spēks, kas darbojas uz virsmas lādiņu Uz sfēras virsmas ar rādiusu r0 vienmērīgi izkliedēts virsmas lādiņš ar blīvumu σ. Viss lādiņš Lauka potenciāls uz sfēras virsmas Ņ.Nadežņikovs Elektriskais potenciāls

  16. Ņ.Nadežņikovs Elektriskais potenciāls

  17. Konstantas funkcijas gradients līdzinās nullei. No iepriekšējā zināms, ka sfēriska apvalka iekšpusē elektriskā lauka nav. Elektriskā lauka intensitāte sfēras iekšpusē ir nulle (Eiekšpusē =0) un ārpusē Ņ.Nadežņikovs Elektriskais potenciāls

  18. Lai aprēķinātu spēku, kas iedarbojas uz elementārlādiņu dq, ņem Evid. Spēks uz laukuma vienību σ2/2ε0. Tas ir vērsts uz ārpusi. Ja uzlādētu elastīgu balonu, tad spēks σ2/2ε0balonu izplēstu. Ņ.Nadežņikovs Elektriskais potenciāls

  19. Ja balonu saspiestu, tad būtu jāpadara Darbs. Ja saspiežot, balona rādiuss izmainās no r0 līdz (r0-dr), tad padarītais darbs jeb lādiņu sistēmas enerģijas pieaugums būs Ņ.Nadežņikovs Elektriskais potenciāls

  20. 2.7. Elektriskā lauka enerģija Iegūto izteiksmi var pārveidot, pieņemot, ka dv = 4π(r0)2dr, Nointegrējot pa visu tilpumu, var iegūt enerģiju W, kas nepieciešama šīs sistēmas izveidošanai Ņ.Nadežņikovs Elektriskais potenciāls

  21. Šeit E2 = E∙E(skalārs reizinājums). Tā ir elektriskā laukā uzkrātā enerģija. Diskrētu lādiņu sistēmas enerģiju var izteikt Ņ.Nadežņikovs Elektriskais potenciāls

  22. Apskata kvadrātiekavas. Katrs šīs summas loceklis ir viena lādiņa radītais potenciāls lādiņa qj atrašanās punktā. Apzīmējot šo summu φj, iegūst TilpumāV izkliedēta lādiņa enerģija Ņ.Nadežņikovs Elektriskais potenciāls

  23. 2.9. Vektoru lauka diverģence Elektriskā laukā apskata tilpumu V, kuru ierobežo noslēgta virsma S. Intensitātes vektora plūsma caur šo virsmu Tilpumu V sadala N daļās, kurām ir norobežojošās virsmas S1, S2,...,SN: Ņ.Nadežņikovs Elektriskais potenciāls

  24. Ņ.Nadežņikovs Elektriskais potenciāls

  25. Samazinot tilpumu Vi, samazinās arī plūsma caur vismu Si. Robežgadījumā, kad Vi→0 un Si→0,t.i.Vi tiecas kļūt par punktu, plūsmas attiecība pret tilpumu tieksies uz Ņ.Nadežņikovs Elektriskais potenciāls

  26. Samazinot tilpumu Vi, samazinās arī plūsma caur vismu Si. Robežgadījumā, kad Vi→0un Si→0,t.i.Vi tiecas kļūt par punktu, plūsmas attiecība pret tilpumu tieksies uz pilnīgi noteiktu šim lauka punktam raksturīgu vērtību, ko sauc par vektoru lauka diverģenci un apzīmē ar div E. Ņ.Nadežņikovs Elektriskais potenciāls

  27. div E ir plūsma no tilpuma Vi uz ārpusi, attiecināta uz laukuma vienību, bezgalīgi maza Vi robežgadījumā. Diverģence ir skalārs lielums un tā mainās no punkta uz punktu. Ņ.Nadežņikovs Elektriskais potenciāls

  28. 2.10. Gausa likums diferenciālā formā Vektora E virsmas integrāli var uzrakstīt formā Robežgadījumā, kad N→ ∞, Vi → 0, iekavu vērtība kļūst par funkcijas E diverģenci un summa pāriet tilpuma integrālī: Ņ.Nadežņikovs Elektriskais potenciāls

  29. Šo izteiksmi sauc par Gausa vai diverģences teorēmu. Salīdzinot to ar, iegūst Ņ.Nadežņikovs Elektriskais potenciāls

  30. Šī izteiksme ir Gausa likums diferenciālā formā. Tas lokāli saista lauka intensitāti ar lādiņa blīvumu. Ja vektoru lauka diverģence kādā punktā nav nulle, tad šajā punktā atrodas kāds lauka avots. Elektrostatiskā lauka avoti ir elektriskie lādiņi. Ņ.Nadežņikovs Elektriskais potenciāls

  31. 2.11. Puasona vienādojums Ir divas ar elektrisko lauku saistītas skalāras funkcijas: potenciāla funkcija φun diverģencediv E. Dekarta koordinātu sistēmā Ievietojot to diverģences izteiksmē, iegūst Ņ.Nadežņikovs Elektriskais potenciāls

  32. Operāciju “div grad” apzīmē 2 un sauc par Laplasa operatoru vai laplasiānu. Lokāla sakarība starp lādiņu blīvumu un potenciālu ir Šo vienādojumu sauc par Puasona vienādojumu. 2= - /0. Ņ.Nadežņikovs Elektriskais potenciāls

  33. 2.12. Laplasa vienādojums Tajos elektriskā lauka punktos, kur lādiņu blīvums ir nulle, potenciālam φ jāapmierina vienādojums 2= 0, kuru sauc par Laplasa vienādojumu. Funkcijas, kuras apmierina Laplasa vienādojumu, sauc par harmoniskām funkcijām. Ņ.Nadežņikovs Elektriskais potenciāls

  34. 2.13. Vektoru lauka rotors Apskata vektoru lauka E(x,y,z) līnijas integrāli pa noslēgtu kontūru L. Kontūrs L norobežo noteiktu virsmu S apskatāmajā laukā. Integrēt pa kontūru L pēc dl nozīmē sasummet vektora E projekciju vērtības uz kontūru L, izvēloties noteiktu kontūra apiešanas virzienu. Ņ.Nadežņikovs Elektriskais potenciāls

  35. Šādu līnijas integrāļa lielumu sauc par cirkulāciju. Dalot virsmu S sīkākās daļās, iegūst mazākus kontūrus L1, L2,...,LN. Cirkulāciju summa Ņ.Nadežņikovs Elektriskais potenciāls

  36. Ņ.Nadežņikovs Elektriskais potenciāls

  37. Jo mazāks cirkulāciju kontūrs, jo lokālāk cirkulācija raksturo vektoru lauku. Samazinot kontūru, samazinās arī kontūra ierobežotais virsmas laukums Si. Ņ.Nadežņikovs Elektriskais potenciāls

  38. Lai iegūtu lielumu, kas viennozīmīgai raksturotu attiecīgo punktu, atrod cirkulācijas attiecību pret norobežotās virsmas laukumu pārejot uz robežu, kad kontūrs savelkas ap apskatāmo punktu. Laukuma elementam Si ir noteikta orientācija, ko raksturo virsmas ārējās normāles vienības vektors n0. Ņ.Nadežņikovs Elektriskais potenciāls

  39. Izvēlas tādu virsmas elementa Si orientāciju, lai vektors n0 un apiešanas virziens pa Lipakļautos labās skrūves likumam. Ņ.Nadežņikovs Elektriskais potenciāls

  40. Cirkulācijas un virsmas attiecības robeža raksturo cirkulāciju apskatāmajā punktā. Ja izvēlas trīs savstarpēji perpendikulārus orientāciju virzienus Ņ.Nadežņikovs Elektriskais potenciāls

  41. x0, y0un z0, tad iegūst trīs lielumus, kas ir kāda vektora komponentes. Šo vektoru apzīmē ar rot E. Definīcija. Vektoru laukā no konkrēta punkta vilkto vektoru, 1) kuram perpendikulārā plaknē vektorfunkcijai ir vislielākā cirkulācija šajā punktā, Ņ.Nadežņikovs Elektriskais potenciāls

  42. 2) kura virziens saskaņots pēc labās skrūves likuma ar cirkulācijas virzienu un 3) kura garums vienāds ar vislielāko cirkulāciju šajā punktā, sauc par vektoru lauka rotoru šajā punktā. Ņ.Nadežņikovs Elektriskais potenciāls

  43. 2.14. Stoksa teorēma Uzrakstīsim vektora cirkulācijas izteiksmi sekojošā formā Robežgadījumā, kad N→ ∞ un Si → 0, iekavās esošā attiecība ir rotE, Ņ.Nadežņikovs Elektriskais potenciāls

  44. summa dod integrāli pa virsmu S, kas ir rot E plūsma Šis vienādojums izsaka Stoksa teorēmu: vektora cirkulācija pa kādu kontūru L ir vienāda ar vektora rotora plūsmu caur virsmu S, kuru norobežo šis kontūrs. Ņ.Nadežņikovs Elektriskais potenciāls

  45. No iepriekšējā: potenciālā laukā intensitātes vektora integrālis pa noslēgtu kontūru ir vienāds ar nulli. Tagad var teikt, ka intensitātes vektora cirkulācija pa noslēgtu kontūru L ir vienāda ar nulli. Ņ.Nadežņikovs Elektriskais potenciāls

  46. Tad no iepriekšējās izteiksmes izriet, ka visiem elektrostatiskā lauka punktiem rot E = 0, t.i. elektrostatiskais lauks ir bezvirpuļu lauks. Ņ.Nadežņikovs Elektriskais potenciāls

  47. Laplasa operators skalārai funkcijai 2 taisnleņķa, cilindriskajā un sfēriskajā koordinātu sistēmā Ņ.Nadežņikovs Elektriskais potenciāls

  48. Ņ.Nadežņikovs Elektriskais potenciāls

  49. Ņ.Nadežņikovs Elektriskais potenciāls

  50. Ņ.Nadežņikovs Elektriskais potenciāls

More Related