Chapter 12
Download
1 / 100

Chapter 12 - PowerPoint PPT Presentation


  • 117 Views
  • Updated On :

Chapter 12. Membrane Transport. Definitions. Solution – mixture of dissolved molecules in a liquid Solute – the substance that is dissolved Solvent – the liquid. Membrane Transport Proteins. Many molecules must move back and forth from inside and outside of the cell

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Chapter 12' - abbott


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Chapter 12

Chapter 12

Membrane Transport


Definitions
Definitions

  • Solution – mixture of dissolved molecules in a liquid

  • Solute – the substance that is dissolved

  • Solvent – the liquid


Membrane transport proteins
Membrane Transport Proteins

  • Many molecules must move back and forth from inside and outside of the cell

  • Most cannot pass through without the assistance of proteins in the membrane bilayer

    • Private passageways for select substances

  • Each cell has membrane has a specific set of proteins depending on the cell



Ion concentrations
Ion Concentrations

  • The maintenance of solutes on both sides of the membrane is critical to the cell

    • Helps to keep the cell from rupturing

  • Concentration of ions on either side varies widely

    • Na+ and Cl- are higher outside the cell

    • K+ is higher inside the cell

    • Must balance the the number of positive and negative charges, both inside and outside cell


Impermeable membranes
Impermeable Membranes

  • Ions and hydrophilic molecules cannot easily pass thru the hydrophobic membrane

  • Small and hydrophobic molecules can

  • Must know the list to the left


2 major classes
2 Major Classes

  • Carrier proteins – move the solute across the membrane by binding it on one side and transporting it to the other side

    • Requires a conformation change

  • Channel protein – small hydrophilic pores that allow for solutes to pass through

    • Use diffusion to move across

    • Also called ion channels when only ions moving



Carrier vs channel
Carrier vs Channel

  • Channels, if open, will let solutes pass if they have the right size and charge

    • Trapdoor-like

  • Carriers require that the solute fit in the binding site

    • Turnstile-like

    • Why carriers are specific like an enzyme and its substrate


Mechanisms of transport
Mechanisms of Transport

  • Provided that there is a pathway, molecules move from a higher to lower concentration

    • Doesn’t require energy

    • Passive transport or facilitated diffusion

  • Movement against a concentration gradient requires energy (low to high)

    • Active transport

    • Requires the harnessing of some energy source by the carrier protein

      • Special types of carriers



Carrier proteins
Carrier Proteins

  • Required for almost all small organic molecules

    • Exception – fat-soluble molecules and small uncharged molecules that can pass by simple diffusion

  • Usually only carry one type of molecule

  • Carriers can also be in other membranes of the cell such as the mitochondria



Passive transport by glucose carrier
Passive Transport by Glucose Carrier

  • Glucose carrier consists of a protein chain that crosses the membrane about 12 times and has at least 2 conformations – switch back and forth

  • One conformation exposes the binding site to the outside of the cell and the other to the inside of the cell


How it works
How it Works

  • Glucose is high outside the cell so the conformation is open to take in glucose and move it to the cytosol where the concentration is low

  • When glucose levels are low in the blood, glucagon (hormone) triggers the breakdown of glycogen (e.g., from the liver), glucose levels are high in the cell and then the conformation moves the glucose out of the cell to the blood stream

  • Glucose moves according to the concentration gradient across the membrane

  • Can move only D-glucose, not mirror image L-glucose


Calcium pumps
Calcium Pumps

  • Moves Ca2+ back into the sarcoplasmic reticulum (modified ER) in skeletal muscle


Voltage across the membrane
Voltage Across the Membrane

  • Charged molecules have another component – a voltage across the membrane = membrane potential

  • Cytoplasm is usually negative relative to the outside, pulls in positive charges and move out negative charges

  • Movement across membrane is under 2 forces – electrochemical gradient

    • Concentration gradient

    • Voltage across the membrane


Electrochemical gradient
Electrochemical Gradient

  • This gradient determines the direction of the solute during passive transport


Active transport
Active Transport

  • 3 main methods to move solutes against an electrochemical gradient

    • Coupled transporters – 1 goes down gradient and 1 goes up the gradient

    • ATP-driven pumps – coupled to ATP hydrolysis

    • Light-driven pumps – uses light as energy, bacteriorhodopsin


Transporters are linked
Transporters are Linked

  • The active transport proteins are linked together so that you can establish the electrochemical gradient

  • Example

    • ATP-driven pump removes Na+ to the outside of the cell (against the gradient) and then re-enters the cell through the Na+-coupled transporter which can bring in many other solutes

    • Also seen in bacterial cells to move H+


Na k atpase na k pump
Na+-K+ ATPase (Na+-K+ Pump)

  • Requires ATP hydrolysis to maintain the Na+-K+ equilibrium in the cell

  • Transporter is also a ATPase (enzyme)

  • This pump keeps the [Na+] 10 to 30 times lower than extracellular levels and the [K+] 10 to 30 times higher than extracellular levels


Na k pump
Na+-K+ Pump

  • Moves K+ while moving Na+

  • Works constantly to maintain [Na+] inside the cell – Na+ comes in thru other channels or carriers


Na and k concentrations
Na+ and K+ Concentrations

  • The [Na+] outside the cell stores a large amount of energy, like water behind a dam

    • Even if the Na+-K+ pump is halted, there is enough stored energy to conduct other Na+ downhill reactions

  • The [K+] inside the cell does not have the same potential energy

    • Electric force pulling K+ into the cell is almost the same as that pushing it out of the cell


Na k pump is a cycle
Na+-K+ Pump is a Cycle


Na k mechanisms
Na+-K+ Mechanisms

  • Pump adds a PO4+ group so that it can pick up 3 Na+

  • When 3 Na+ are in place, change shape and pump Na+ out

  • Opens site for 2 K+ to bind, when in place, PO4+ group is removed and it changes to original shape

  • Dumps K+ to inside, reforming the site for 3 more Na+

  • Visit http://highered.mcgraw-hill.com/sites/0072437316/student_view0/chapter6/animations.html

    • See animation at Sodium-Potassium Exchange Pump (682.0K)


Coupled transporters
Coupled Transporters

  • The energy in the Na+-K+ pump can be used to move a second solute

    • Energy trapped in the Na+ gradient to move down its gradient and another molecule against its gradient

  • Couple the movement of 2 molecules in several ways

    • Symport – move both in the same direction

    • Antiport – move in opposite direction

  • Carrier proteins that only carry one molecule is called uniport (not coupled)

  • Visit http://highered.mcgraw-hill.com/sites/0072437316/student_view0/chapter6/animations.html

    • See animation at Cotransport



Na driven symport
Na+-Driven Symport

  • If one molecule of the transport pair is missing, the transport of the second does not occur


2 methods of glucose transport
2 Methods of Glucose Transport

  • 2 mechanisms are separate

    • Passive transport at the apical surface

    • Active transport at the basal surface

  • Caused by the tight junctions


Na driven transport
Na+-Driven Transport

  • Na+ driven symport

    • Used to move other sugars and amino acids

  • Na+ driven antiport

    • Also very important in cells

    • Na+-H+ exchanger is used to move Na+ into the cell and then moves the H+ out of the cell

      • Regulates the pH of the cytosol


Osmosis
Osmosis

  • The movement of water from region of low solute concentration (high water concentration) to an area of high solute concentration (low water concentration)

  • Driving force is the osmotic pressure caused by the difference in water pressure


Osmotic solutions tonicity tonos tension
Osmotic Solutions – Tonicity (tonos = tension)

  • Isotonic – equal solute on each side of the membrane

  • Hypotonic – less solute outside cell, water rushes into cell and cell bursts

  • Hypertonic – more solute outside cell, water rushes out of cell and cell shrivels


Osmotic swelling
Osmotic Swelling

  • Animal cells maintain normal cell structure with Na+-K+ pump (moves out Na+ and prevents Cl- from moving in)

  • Plants have cell walls – turgor pressure is the effect of osmosis and active transport of ions into the cell – keeps leaves and stems upright

  • Protozoans have special water collecting vacuoles to remove excess water



Tonicity in action
Tonicity in Action

  • An isotonic solution has an equal amount of dissolved solute in it compared to the things around it.

  • Typically in humans and most other mammals, the isotonic solution is 0.9 weight percent (9 g/L) salt in aqueous solution, this is also known as saline, which is generally administered via an intra-venous drip.

  • Red blood cells normally exist in a 0.9 percent salt solution (saline) with the same concentration of salt in the outside solution.

  • Source: http://en.wikipedia.org/wiki/Isotonic.


Water water everwhere
Water, water, everwhere…

  • “Water, water, everywhere,Nor any drop to drink” (pt. II, st. 9. from the “The Rhyme of Ancient Mariner ” by Samuel Taylor Coleridge [1772-1834])

  • Seawater is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of ~3.5%. This means that for every 1 liter of seawater there are 35 grams of salts (mostly, but not entirely, sodium chloride) dissolved in it. Source: http://en.wikipedia.org/wiki/Sea_water

  • A person who drinks undiluted sea water will actually become more dehydrated & may salt in the intestine may cause diarrhea. To could potentially extend your drinking supply though; it can be diluted with potable water by a factor of 4 or greater to bring it below a concentration of 0.9% solute, rendering it safer for consumption.


Calcium pumps1
Calcium Pumps

  • Calcium is kept at low concentration in the cell by ATP-driven calcium pump similar to Na+-K+ pump with the exception that it does not transport a second solute

  • Tightly regulated as it can influence many other molecules in the cytoplasm

  • Influx of calcium is usually the trigger of cell signaling


H gradients
H+ Gradients

  • Drive the movement of molecule across the membranes of plants, fungi and bacteria

  • Similar to animal Na+-K+ pump but moves H+


H pumps
H+ Pumps


Several reasons for moving h through membranes in plants
Several reasons for moving H+ through membranes in plants

  • Cell wall acidification (H+) helps to loosen the cellulose fibers so that plant cells can increase in size and elongate.

  • Cation ion exchange by means of secreting H+ allows roots to harvest positively charged mineral nutrients (e.g., Mg++, Ca++, K+, Na+) that are attached to negatively charged clay particles in the soil.

  • The relative concentrations of H+ in vacuoles varies. With anthocyanins (a natural pH indicator) in the cell sap of a vacuole, this imparts the color seen in some flowers and other plant tissues (e.g. hydrangea, violets, ornamental maize, purple cabbage).





Channel proteins
Channel Proteins plants

  • Channel proteins create a hydrophilic opening in which small water-soluble molecules can pass into or out of the cell

    • Gap junctions and porins make very large openings

  • Ion channels are very specific with regards to pore size and the charge on the molecule to be moved

    • Move mainly Na, K, Cl and Ca


Ion channels
Ion Channels plants

  • Have ion selectivity – allows some ions to pass and restricts others

    • Based on pore size and the charges on the inner ‘wall’ of the channel

  • Ion channels are not always open

    • Have the ability to regulate the movement of ions so that control can maintain the ion concentrations within the cell

    • Channels are gated – open or closed

      • Specific stimuli triggers the change in shape and opening or closing of channel


Ion channels1
Ion Channels plants



Membrane potential
Membrane Potential plants

  • Basis of all electrical activity in cells

  • Active transport can keep ion concentration far from equilibrium in the cell

  • Channels open and the ions rush in because of the gradient difference – changes the voltage across the membrane

    • As voltage changes, other ion channels open and other ions rush in

  • Allows for the electrical activity to move across the membrane


Variety of channels
Variety of Channels plants

  • Ion channels vary with respect to

    • Ion selectivity – which ions can go thru

    • Gating – conditions that influence opening and closing


Membrane ion channels
Membrane Ion Channels plants

Types of plasma membrane ion channels

  • Passive, or leakage, channels – always open

  • Chemically (or ligand)-gated channels – open with binding of a specific neurotransmitter (the ligand)

  • Voltage-gated channels – open and close in response to changes in the membrane potential

  • Mechanically-gated channels – open and close in response to physical deformation of receptors


3 types of channels
3 Types of Channels plants

  • Voltage-gated channels – controlled by membrane potential

  • Ligand-gated channels – controlled by binding of a ligand to a membrane protein (either on the outside or the inside)

  • Stress activated channel – controlled by mechanical force on the cell


Auditory hair cells
Auditory Hair Cells plants

  • Stress activated

  • Sound waves cause the stereocilia to tilt and this causes the channels to open and transport signal to the brain

  • Hair cells to auditory nerve to brain


Voltage gated channels
Voltage-Gated Channels plants

  • Move impulses along the nerve

  • Have voltage sensors that are sensitive to changes in membrane potential

    • Allows for changes in the charge across the membrane

  • Distribution of ions gives rise to membrane potential

    • Usually negative inside and positive outside


End of this presentation

END OF THIS PRESENTATION plants

THE REMAINING SLIDES PROVIDE ADDITIONAL INFORMATION – FYI FOR WHICH THE FINAL EXAM WILL NOT COVER


Voltage gated channel
Voltage-Gated Channel plants

  • Example: Na+ channel

  • Closed when the intracellular environment is negative

  • Open when the intracellular environment is positive - Na+ can enter the cell


Ligand gated channel
Ligand-Gated Channel plants

Example: Na+-K+ gated channel

Closed when a neurotransmitter is not bound to the extracellular receptor

Open when a neurotransmitter is attached to the receptor - Na+ enters the cell and K+ exits the cell


Resting membrane potential
Resting Membrane Potential plants

A potential (-70mV) exists across the membrane of a resting neuron – the membrane is polarized


Resting membrane potential1
Resting Membrane Potential plants

  • inside is negative relative to the outside

  • polarizedmembrane

  • due to distribution of ions

  • Na+/K+ pump


Resting membrane potential2
Resting Membrane Potential plants

  • Ionic differences are the consequence of:

    • Different membrane permeabilities due to passive ion channels for Na+, K+,and Cl-

    • Operation of the sodium-potassium pump


Membrane potentials signals
Membrane Potentials: Signals plants

Neurons use changes in membrane potential to receive, integrate, and send information

  • Membrane potential changes are produced by:

    • Changes in membrane permeability to ions

    • Alterations of ion concentrations across the membrane

  • Two types of signals are produced by a change in membrane potential:

    • graded potentials (short-distance)

    • action potentials (long-distance)


Levels of polarization
Levels of Polarization plants

  • Depolarization – inside of the membrane becomes less negative (or even reverses) – a reduction in potential

  • Repolarization – the membrane returns to its resting membrane potential

  • Hyperpolarization – inside of the membrane becomes more negative than the resting potential –an increase in potential

Depolarization increases the probability of producing nerve impulses. Hyperpolarization reduces the probability of producing nerve impulses.



Graded potentials
Graded Potentials plants

Short-lived, local changes in membrane potential (either depolarizations or hyperpolarizations)

Cause currents that decreases in magnitude with distance

Their magnitude varies directly with the strength of the stimulus – the stronger the stimulus the more the voltage changes and the farther the current goes

Sufficiently strong graded potentials can initiate action potentials


Graded potentials1
Graded Potentials plants

short- distance signal

Voltage changes in graded potentials are decremental, the charge is quickly lost through the permeable plasma membrane


Action potentials aps
Action Potentials (APs) plants

An action potential in the axon of a neuron is called a nerve impulse and is the way neurons communicate.

The AP is a brief reversal of membrane potential with a total amplitude of 100 mV (from -70mV to +30mV)

APs do not decrease in strength with distance

The depolarization phase is followed by a repolarization phase and often a short period of hyperpolarization

Events of AP generation and transmission are the same for skeletal muscle cells and neurons


Action potential resting state
Action Potential: Resting State plants

Na+ and K+ channels are closed

Each Na+ channel has two voltage-regulated gates

Activation gates – closed in the resting state

Inactivation gates – open in the resting state

Depolarization opens the activation gate (rapid) and closes the inactivation gate (slower) The gate for the K+ is slowly opened with depolarization.


Depolarization phase
Depolarization Phase plants

Na+ activation gates open quickly and Na+ enters causing local depolarization which opens more activation gates and cell interior becomes progressively less negative. Rapid depolarization and polarity reversal.

Threshold – a critical level of depolarization (-55 to -50 mV) where depolarization becomes self-generating

Positive Feedback?


Repolarization phase
Repolarization Phase plants

Positive intracellular charge opposes further Na+ entry. Sodium inactivation gates of Na+channels close.

As sodium gates close, the slow voltage-sensitive K+ gates open and K+ leaves the cell following its electrochemical gradient and the internal negativity of the neuron is restored


Hyperpolarization
Hyperpolarization plants

The slow K+ gates remain open longer than is needed to restore the resting state. This excessive efflux causes hyperpolarization of the membrane

The neuron is insensitive to stimulus and depolarization during this time


Role of the sodium potassium pump
Role of the Sodium-Potassium Pump plants

Repolarization restores the resting electrical conditions of the neuron, but does not restore the resting ionic conditions

Ionic redistribution is accomplished by the sodium-potassium pump following repolarization


Potential changes
Potential Changes plants

  • at rest membrane is polarized

  • threshold stimulus reached

  • sodium channels open and membrane depolarizes

  • potassium leaves cytoplasm and membrane repolarizes





Propagation of an action potential
Propagation of an Action Potential plants

The action potential is self-propagating and moves away from the stimulus (point of origin)


Threshold and action potentials
Threshold and Action Potentials plants

Threshold Voltage– membrane is depolarized by 15 to 20 mV

Subthreshold stimuli produce subthreshold depolarizations and are not translated into APs

Stronger threshold stimuli produce depolarizing currents that are translated into action potentials

All-or-None phenomenon – action potentials either happen completely, or not at all



Absolute refractory period
Absolute Refractory Period plants

When a section of membrane is generating an AP and Na+ channels are open, the neuron cannot respond to another stimulus

The absolute refractory period is the time from the opening of the Na+ activation gates until the closing of inactivation gates


Relative refractory period
Relative Refractory Period plants

  • The relative refractory period is the interval following the absolute refractory period when:

    • Na+ gates are closed

    • K+ gates are open

    • Repolarization is occurring

During this period, the threshold level is elevated, allowing only strong stimuli to generate an AP (a strong stimulus can cause more frequent AP generation)



Synapse
Synapse plants

A junction that mediates information transfer from one neuron to another neuron or to an effector cell

Presynaptic neuron – conducts impulses toward the synapse (sender)

Postsynaptic neuron – transmits impulses away from the synapse (receiver)


Chemical synapses
Chemical Synapses plants

Specialized for the release and reception of chemical neurotransmitters

  • Typically composed of two parts:

    • Axon terminal of the presynaptic neuron containing membrane-bound synaptic vesicles

    • Receptor region on the dendrite(s) or soma of the postsynaptic neuron


Synaptic cleft
Synaptic Cleft plants

  • Fluid-filled space separating the presynaptic and postsynaptic neurons, prevents nerve impulses from directly passing from one neuron to the next

  • Transmission across the synaptic cleft:

    • Is a chemical event (as opposed to an electrical one)

    • Ensures unidirectional communication between neurons


Synaptic cleft information transfer
Synaptic Cleft: Information Transfer plants

Nerve impulses reach the axon terminal of the presynaptic neuron and open Ca2+ channels

Neurotransmitter is released into the synaptic cleft via exocytosis

Neurotransmitter crosses the synaptic cleft and binds to receptors on the postsynaptic neuron

Postsynaptic membrane permeability changes due to opening of ion channels, causing an excitatory or inhibitory effect



Termination of neurotransmitter effects
Termination of Neurotransmitter Effects plants

Neurotransmitter bound to a postsynaptic neuron produces a continuous postsynaptic effect and also blocks reception of additional “messages”

  • Terminating Mechanisms:

    • Degradation by enzymes

    • Uptake by astrocytes or the presynaptic terminals

    • Diffusion away from the synaptic cleft


Synaptic delay
Synaptic Delay plants

Neurotransmitter must be released, diffuse across the synapse, and bind to receptors (0.3-5.0 ms)

Synaptic delay is the rate-limiting step of neural transmission


Postsynaptic potentials
Postsynaptic Potentials plants

  • Neurotransmitter receptors mediate graded changes in membrane potential according to:

    • The amount of neurotransmitter released

    • The amount of time the neurotransmitter is bound to receptors


Inhibitory postsynaptic potentials
Inhibitory Postsynaptic Potentials plants

  • Neurotransmitter binding to a receptor at inhibitory synapses reduces a postsynaptic neuron’s ability to generate an action potential

    • Postsynaptic membrane is hyperpolarized due to increased permeability to K+ and/or Cl- ions. Na+ permeability is not affected.

    • Leaves the charge on the inner membrane face more negative and the neuron becomes less likely to “fire”.



Neurotransmitters
Neurotransmitters plants

Chemicals used for neuron communication with the body and the brain

More than 50 different neurotransmitters have been identified

Classified chemically and functionally



Neurotransmitters chemical classification
Neurotransmitters – Chemical classification plants

  • Acetylcholine (ACh)

  • Biogenic amines

  • Amino acids

  • Peptides

  • Novel messengers: ATP and dissolved gases NO and CO


Neurotransmitters acetylcholine
Neurotransmitters: Acetylcholine plants

Released at the neuromuscular junction

  • Enclosed in synaptic vesicles

  • Degraded by the acetylcholinesterase (AChE)

    Released by:

    • All neurons that stimulate skeletal muscle

    • Some neurons in the autonomic nervous system


Functional classification of neurotransmitters
Functional Classification of Neurotransmitters plants

Two classifications: excitatory and inhibitory

  • Excitatory neurotransmitters cause depolarizations (e.g., glutamate)

  • Inhibitory neurotransmitters cause hyperpolarizations (e.g., GABA and glycine)

Some neurotransmitters have both excitatory and inhibitory effects (determined by the receptor type of the postsynaptic neuron). ACh is excitatory at neuromuscular junctions with skeletal muscle and Inhibitory in cardiac muscle.


Divergence
Divergence plants

  • one neuron sends impulses to several neurons

  • can amplify an impulse

  • impulse from a single neuron in CNS may be amplified to activate enough motor units needed for muscle contraction


Convergence
Convergence plants

  • neuron receives input from several neurons

  • incoming impulses represent information from different types of sensory receptors

  • allows nervous system to collect, process, and respond to information

  • makes it possible for a neuron to sum impulses from different sources


Animations on ion flow and signaling in neurons and muscles
Animations on ion flow and signaling in neurons and muscles plants

  • http://highered.mcgraw-hill.com/sites/0072437316/student_view0/chapter45/animations.html#