1 / 52

Semiconductor Device Modeling and Characterization EE5342, Lecture 9 -Spring 2010

Semiconductor Device Modeling and Characterization EE5342, Lecture 9 -Spring 2010. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/. Effect of carrier recombination in DR. The S-R-H rate ( t no = t po = t o ) is. Effect of carrier rec. in DR (cont.).

aadi
Download Presentation

Semiconductor Device Modeling and Characterization EE5342, Lecture 9 -Spring 2010

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Semiconductor Device Modeling and CharacterizationEE5342, Lecture 9 -Spring 2010 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

  2. Effect of carrierrecombination in DR • The S-R-H rate (tno = tpo = to) is

  3. Effect of carrierrec. in DR (cont.) • For low Va ~ 10 Vt • In DR, n and p are still > ni • The net recombination rate, U, is still finite so there is net carrier recomb. • reduces the carriers available for the ideal diode current • adds an additional current component

  4. Effect of carrierrec. in DR (cont.)

  5. Effect of non-zero E in the CNR • This is usually not a factor in a short diode, but when E is finite -> resistor • In a long diode, there is an additional ohmic resistance (usually called the parasitic diode series resistance, Rs) • Rs = L/(nqmnA) for a p+n long diode. • L=Wn-Lp (so the current is diode-like for Lp and the resistive otherwise).

  6. High level injection effects • Law of the junction remains in the same form, [pnnn]xn=ni2exp(Va/Vt), etc. • However, now dpn = dnn become >> nno = Nd, etc. • Consequently, the l.o.t.j. reaches the limiting form dpndnn = ni2exp(Va/Vt) • Giving, dpn(xn) = niexp(Va/(2Vt)), or dnp(-xp) = niexp(Va/(2Vt)),

  7. High level injeffects (cont.)

  8. Summary of Va > 0 current density eqns. • Ideal diode, Jsexpd(Va/(hVt)) • ideality factor, h • Recombination, Js,recexp(Va/(2hVt)) • appears in parallel with ideal term • High-level injection, (Js*JKF)1/2exp(Va/(2hVt)) • SPICE model by modulating ideal Js term • Va = Vext - J*A*Rs = Vext - Idiode*Rs

  9. Diode Diffusion and Recombination Currents

  10. Diode Diffusion and Recombination Currents – One Sided Diode

  11. ln(J) Plot of typical Va > 0 current density equations data Effect of Rs Vext VKF

  12. SPICE DiodeModel • Dinj • N~1, rd~N*Vt/iD • rd*Cd = TT = • Cdepl given by CJO, VJ and M • Drec • N~2, rd~N*Vt/iD • rd*Cd = ? • Cdepl =? t

  13. Project 1A – Diode parameters to use

  14. Tasks • Using PSpice or any simulator, plot the i-v curve for this diode, assuming Rth = 0, for several temperatures in the range 300 K < TEMP = TAMB < 304 K. • Using this data, determine what the i-v plot would be for Rth = 500 K/W. • Using this data, determine the maximum operating temperature for which the diode conductance is within 1% of the Rth = 0 value at 300 K. • Do the same for a 10% tolerance. • Propose a SPICE macro which would give the Rth = 500 K/W i-v relationship.

  15. Example

  16. Approaches • Phenomenological • Theoretical

  17. ** The diode is modeled as an ohmic resistance (RS/area) in series with an intrinsic diode. <(+) node> is the anode and <(-) node> is the cathode. Positive current is current flowing from the anode through the diode to the cathode. [area value] scales IS, ISR, IKF,RS, CJO, and IBV, and defaults to 1. IBV and BV are both specified as positive values. In the following equations: Vd = voltage across the intrinsic diode onlyVt = k·T/q (thermal voltage)k = Boltzmann’s constantq = electron charge T = analysis temperature (°K) Tnom = nom. temp. (set with TNOM option)

  18. D Diode ** General Form D<name> <(+) node> <(-) node> <model name> [area value] Examples DCLAMP 14 0 DMODD13 15 17 SWITCH 1.5 Model Form .MODEL <model name> D [model parameters] .model D1N4148-X D(Is=2.682n N=1.836 Rs=.5664 Ikf=44.17m Xti=3 Eg=1.11 Cjo=4p M=.3333 Vj=.5 Fc=.5 Isr=1.565n Nr=2 Bv=100 Ibv=10 0u Tt=11.54n) *$

  19. Diode Model Parameters ** • Model Parameters (see .MODEL statement) • Description Unit Default • IS Saturation current amp 1E-14 • N Emission coefficient 1 • ISR Recombination current parameter amp 0 • NR Emission coefficient for ISR 1 • IKF High-injection “knee” current amp infinite • BV Reverse breakdown “knee” voltage volt infinite • IBV Reverse breakdown “knee” current amp 1E-10 • NBV Reverse breakdown ideality factor 1 • RS Parasitic resistance ohm 0 • TT Transit time sec 0 • CJO Zero-bias p-n capacitance farad 0 • VJ p-n potential volt 1 • M p-n grading coefficient 0.5 • FC Forward-bias depletion cap. coef, 0.5 • EG Bandgap voltage (barrier height) eV 1.11

  20. Diode Model Parameters ** • Model Parameters (see .MODEL statement) • Description Unit Default • XTI IS temperature exponent 3 • TIKF IKF temperature coefficient (linear) °C-1 0 • TBV1 BV temperature coefficient (linear) °C-1 0 • TBV2 BV temperature coefficient (quadratic) °C-2 0 • TRS1 RS temperature coefficient (linear) °C-1 0 • TRS2 RS temperature coefficient (quadratic) °C-2 0 • T_MEASURED Measured temperature °C • T_ABS Absolute temperature °C • T_REL_GLOBAL Rel. to curr. Temp. °C • T_REL_LOCAL Relative to AKO model temperature °C • For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see the .MODEL statement.

  21. ** DC Current Id = area(Ifwd - Irev)Ifwd = forward current = InrmKinj + IrecKgenInrm = normal current = IS(exp (Vd/(NVt))-1) Kinj = high-injection factor For: IKF > 0, Kinj = (IKF/(IKF+Inrm))1/2 otherwise, Kinj = 1 Irec = rec. cur. = ISR(exp (Vd/(NR·Vt))- 1) Kgen = generation factor = ((1-Vd/VJ)2+0.005)M/2Irev = reverse current = Irevhigh + IrevlowIrevhigh = IBVexp[-(Vd+BV)/(NBV·Vt)]Irevlow = IBVLexp[-(Vd+BV)/(NBVL·Vt)}

  22. Vext-Va=iD*Rs low level injection ln iD ln(IKF) Effect ofRs ln[(IS*IKF) 1/2] Effect of high level injection ln(ISR) Data ln(IS) vD= Vext recomb. current VKF

  23. Interpreting a plotof log(iD) vs. Vd In the region where Irec < Inrm < IKF, and iD*RS << Vd. iD ~ Inrm = IS(exp (Vd/(NVt)) - 1) For N = 1 and Vt = 25.852 mV, the slope of the plot of log(iD) vs. Vd is evaluated as {dlog(iD)/dVd} = log (e)/(NVt) = 16.799 decades/V = 1decade/59.526mV

  24. Static Model Eqns.Parameter Extraction In the region where Irec < Inrm < IKF, and iD*RS << Vd. iD ~ Inrm = IS(exp (Vd/(NVt)) - 1) {diD/dVd}/iD = d[ln(iD)]/dVd = 1/(NVt) so N ~ {dVd/d[ln(iD)]}/Vt  Neff, and ln(IS) ~ ln(iD) - Vd/(NVt) ln(ISeff). Note: iD, Vt, etc., are normalized to 1A, 1V, resp.

  25. Static Model Eqns.Parameter Extraction In the region where Irec > Inrm, and iD*RS << Vd. iD ~ Irec = ISR(exp (Vd/(NRVt)) - 1) {diD/dVd}/iD = d[ln(iD)]/dVd ~ 1/(NRVt) so NR ~ {dVd/d[ln(iD)]}/Vt Neff, & ln(ISR) ~ln(iD) -Vd/(NRVt ) ln(ISReff). Note: iD, Vt, etc., are normalized to 1A, 1V, resp.

  26. Static Model Eqns.Parameter Extraction In the region where IKF > Inrm, and iD*RS << Vd. iD ~ [ISIKF]1/2(exp (Vd/(2NVt)) - 1) {diD/dVd}/iD = d[ln(iD)]/dVd ~ (2NVt)-1 so 2N ~ {dVd/d[ln(iD)]}/Vt  2Neff, and ln(iD) -Vd/(NRVt)  ½ln(ISIKFeff). Note: iD, Vt, etc., are normalized to 1A, 1V, resp.

  27. Static Model Eqns.Parameter Extraction In the region where iD*RS >> Vd. diD/Vd ~ 1/RSeff dVd/diD  RSeff

  28. Getting Diode Data forParameter Extraction • The model used .model Dbreak D( Is=1e-13 N=1 Rs=.5 Ikf=5m Isr=.11n Nr=2) • Analysis has V1 swept, and IPRINT has V1 swept • iD, Vd data in Output

  29. diD/dVd - Numerical Differentiation

  30. dln(iD)/dVd - Numerical Differentiation

  31. Diode Par.Extraction 1/Reff iD ISeff

  32. Results ofParameter Extraction • At Vd = 0.2 V, NReff = 1.97, ISReff = 8.99E-11 A. • At Vd = 0.515 V, Neff = 1.01, ISeff = 1.35 E-13 A. • At Vd = 0.9 V, RSeff = 0.725 Ohm • Compare to .model Dbreak D( Is=1e-13 N=1 Rs=.5 Ikf=5m Isr=.11n Nr=2)

  33. Hints for RS and NFparameter extraction In the region where vD > VKF. Defining vD = vDext - iD*RS and IHLI = [ISIKF]1/2. iD = IHLIexp (vD/2NVt) + ISRexp (vD/NRVt) diD/diD = 1  (iD/2NVt)(dvDext/diD - RS) + … Thus, for vD > VKF (highest voltages only) • plot iD-1vs. (dvDext/diD) to get a line with • slope = (2NVt)-1, intercept = - RS/(2NVt)

  34. Application of RS tolower current data In the region where vD < VKF. We still have vD = vDext - iD*RS and since. iD = ISexp (vD/NVt) + ISRexp (vD/NRVt) • Try applying the derivatives for methods described to the variables iD and vD (using RS and vDext). • You also might try comparing the N value from the regular N extraction procedure to the value from the previous slide.

  35. Reverse bias (Va<0)=> carrier gen in DR • Va< 0 gives the net rec rate, U = -ni/2t0, t0 = mean min carr g/r l.t.

  36. Reverse bias (Va< 0),carr gen in DR (cont.)

  37. Reverse biasjunction breakdown • Avalanche breakdown • Electric field accelerates electrons to sufficient energy to initiate multiplication of impact ionization of valence bonding electrons • field dependence shown on next slide • Heavily doped narrow junction will allow tunneling - see Neamen*, p. 274 • Zener breakdown

  38. Reverse biasjunction breakdown • Assume-Va = VR >> Vbi, so Vbi-Va-->VR • Since Emax~ 2VR/W = (2qN-VR/(e))1/2, and VR = BV when Emax = Ecrit (N- is doping of lightly doped side ~ Neff) • BV = e (Ecrit )2/(2qN-) • Remember, this is a 1-dim calculation

  39. Reverse biasjunction breakdown

  40. Ecrit for reverse breakdown (M&K**) Taken from p. 198, M&K** Casey Model for Ecrit

  41. Junction curvatureeffect on breakdown • The field due to a sphere, R, with charge, Q is Er = Q/(4per2) for (r > R) • V(R) = Q/(4peR), (V at the surface) • So, for constant potential, V, the field, Er(R) = V/R (E field at surface increases for smaller spheres) Note: corners of a jctn of depth xj are like 1/8 spheres of radius ~ xj

  42. BV for reverse breakdown (M&K**) Taken from Figure 4.13, p. 198, M&K** Breakdown voltage of a one-sided, plan, silicon step junction showing the effect of junction curvature.4,5

  43. Diode Switching • Consider the charging and discharging of a Pn diode • (Na > Nd) • Wd << Lp • For t < 0, apply the Thevenin pair VF and RF, so that in steady state • IF = (VF - Va)/RF, VF >> Va , so current source • For t > 0, apply VR and RR • IR = (VR + Va)/RR, VR >> Va, so current source

  44. Diode switching(cont.) VF,VR >> Va F: t < 0 Sw RF R: t > 0 VF + RR D VR +

  45. Diode chargefor t < 0 pn pno x xn xnc

  46. Diode charge fort >>> 0 (long times) pn pno x xn xnc

  47. Equationsummary

  48. Snapshot for tbarely > 0 pn Total charge removed, Qdis=IRt pno x xn xnc

More Related