ventilation l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
VENTILATION PowerPoint Presentation
Download Presentation
VENTILATION

Loading in 2 Seconds...

play fullscreen
1 / 63

VENTILATION - PowerPoint PPT Presentation


  • 342 Views
  • Uploaded on

VENTILATION . CMV SPONTANEOUS LFPPV HFPPV Disadvantages - TC 1. Pulmonary - Barotrauma 2 Cardiac 3. Renal 4. Brain 5. Other Organs. VENTILATION . Prof. Mehdi Hasan Mumtaz. VARYING TC Compliance Resistance Modes of Ventilation - IMV - VMMV - SIMV SIMV PEEP PSV.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'VENTILATION' - Rita


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
ventilation
VENTILATION

CMV SPONTANEOUS

LFPPV HFPPV

Disadvantages - TC1. Pulmonary - Barotrauma2 Cardiac3. Renal4. Brain5. Other Organs

ventilation2

VENTILATION

Prof. Mehdi Hasan Mumtaz

slide3

VARYING TC

  • Compliance Resistance
  • Modes of Ventilation
  • - IMV
  • - VMMV
  • - SIMV
  • SIMV
  • PEEP
  • PSV

- VIQ Mismatch

- BaroNelufltsma

ventilation4
VENTILATION

Partial Ventilatory

Support

Full Ventilatory

Support

concept of lung rest
Acceptable blood gases.(permissive hypercapnoea)

Alteration of ventilatory pattern to reduce lung stress. (low peak, mean end expiratory pressure low minute volumes).

Use of artificial membrans

or

Artificial lung assist (ALA).

1. ECMO.

2. ECCO2R.

3. IVOX.

CONCEPT OF “LUNG REST”
assisted ventilation
ASSISTED VENTILATION

“Incorporation ofSpontaneous Breaths”

  • Paw
  • VT
  • Pulmonary Circulation
  • Organ Perfusion
  • Harmonious relationship between patient & Ventilator.
assisted ventilation7
ASSISTED VENTILATION

Advantages of Spontaneous

Ventilatory Effects

  • lnspiratorv assist
  • Mechanical ventilation
  • Peak airway pressure
  • Venous return
  • Less effect on return renal function
  • Less sedation.
  • Muscle Relaxation
    • Muscle weakness
    • Impaired gut motility
    • Suppression of cough reflex.
proportion assist ventilation pav
PROPORTION ASSISTVENTILATION (PAV)
  • Younes 1992 First Described & Used
  • Pattern of Operation
  • Advantages
    • Greater Comfort
    • No fighting with machine
    • Less Sedation
    • Less ParalysIs
    • Preservation respiratory control
    • Less airway pressure
ventilation9
VENTILATION

Volume Controlled (VC)

Vs

Pressure Controlled (PC)

1. VOLUME CONTROLLED

VT = Preset or constant

F = Preset

MV = constant

Mechanics change - airway pressure change

- monitor carefully

slide10

VENTILATION

Volume Controlled (VC)

Vs

Pressure Controlled (PC)

2. PRESSURE CONTROLLED

- lnspiratory pressure = Preset or constant

- Inspiratory flow = High initially - decelerate rapidly

- VT&MV = Monitor on time constant

= Monitor volumes carefully

PC-IRV = Recommended in ARDS

varying i e ratio
VARYING I:E RATIO

Collapsable Alveoli Kept Open

  • External PEEP
  • Internal PEEP (Auto PEEP)
    • VT.
    •  ET.
    • TC.

Compliance Resistannce

slide12

VARYING I:E RATIO

  • Regional
  • Whole resp system
  • Ventilator system

Narrow tube

  • Ventilator System

Slow PEEP valve

  • Slow alveolar compartment = auto PEEP.
  • Fast alveolar Compartment = need ext. PEEP
inverse ratio ventilation irv
INVERSE RATIO VENTILATION (IRV)
  • 1871 Reynolds - First Proposed- Neonates
  • 1980 Baun et al
  • 1983 Ravizza etal
  • 1984 Cole et al
  • 1989 Abraham Yoshihama
  • 1992 Barbas etal

Advocated for

ARDS

inverse ratio ventilation irv14
INVERSE RATIO VENTILATION (IRV)

ADVANTAGES:

  • More homogenous ventilation
  • Opens CoIIapsible alveoli
  • Intrinsic PEEP -Regional

-Individual

    • Slow compartment
    • Faster compartment
    • (Prepondrance in ARDS)
  • Improvement in gas exchange.

Contra-indication = obstructive lung disease

bipap pc ventilation with unrestricted spontaneous breathing at anymoment of ventilatory cycle
BIPAP “PC-ventilation with unrestricted spontaneous breathing at anymoment of ventilatory cycle”
  • Baum et al 1989 first described (Evita).
  • Rouby et al 1992 intermittent mandatory pressure release ventilation (IMPRV).
  • Sydow et al 1993 BIPAP + APRV.
subdivision
SUBDIVISION

No spontaneous breathing

Spontaneous breathing at low pressure

Spontaneous breathing at high pressure level

Spontaneous breathing at both CPAP level.

  • CMV – BIPAP
  • IMV – BIPAP
  • APRV – BIPAP
  • GENUINE - BIPAP
slide17
VC-IRV

VT=8-12ml/KG

I:E=2:1-3:1

PEEP=5cmH2O

F=10-15min

RESULT:

No significant

change from VC

conventional ventilation

BIPAP-APRV

CPAP = 15-30CM FOR 2-4 S

PRESSURE TO

RELEASE = 5 cmH2O for

0.5-0.78

Peak airway pressure -low

Peak & mean pressure low in 24 hrs.

Progressive alveolar recruitment.

advantages
ADVANTAGES
  • Less MV
  • Partial Spontaneous Breathing.
  • Low peak airway pressure.
  • Less impairment of P. circulation.
  • Improved O2 delivery.
  • Effective alveolar recruitment.
airway pressure release ventilation aprv
AIRWAY PRESSURE RELEASE VENTILATION (APRV)

1987 - Down & Group (Stock etal 1987)

“Spontaneous breathing at preset (CPAP) interrupted by short (1-1.5S) releases of pressure plateau for further expiration”

slide20

AIRWAY PRESSURE RELEASE VENTILATION (APRV)

  • Useful features:
  • Reduces lung volume.
  • High airway pressure.
  • Intrinsic PEEP in slow alveoli.
  • Preservation of Spontaneous breathing.
  • Less baro/voluntrauma.
  • Reduction in circulatory compromise.
  • Better ventilation/perfusion.
  • Application of APRV
  • BIPAP.
  • IMPRV.
permissive hypercapnoea
PERMISSIVE HYPERCAPNOEA

“1990 - Hickling”

  • VT
  •  PIP.
  • PCO2.

Extrinsic PEEP

  • Maintain PaW

Intrinsic PEEP

ADVANTAGES

    •  Barotrauma
    •  Volutrauma
    •  Physiological effect

DISADVANTAGES = Hypercarbia

Compensation - HCO3 & Kidney

- HCO3 infusion

selection criteria
Selection Criteria

Mean airway P x FIO2%

OI = --------------------------------

Post-ductal Pa02

Complications

Intracranial

Pulmonary

  • Bleeding Nasal

UmbIicaI artery

Chest tube site

  • NeurologicaI Handicap
  • Septic

Procedure:

Warning

    • Clinical assessment.
    • Radiological assessment.
    • Lung compliance.
criteria
Criteria

A. Fast Selection criteria

- PaO2<6.6

- PaCO2=3.9-5.9

- F102= 1.0

- PEEP> 5cmH2O for 5min

B. Slow Selection Criteria

48hrs assessment with conventional therapy

- PaO2<6.6

- PaCO2=3.9-5.9

- F102= 0.6

- PEEP> 5cmH2O for 15min

- QS/QT> 30% at FIO2 1.0&PEEP =5cmH20

ecco2r
ECCO2R

“VENTILATION SPARING MANOEUVRE”

CO2 - Remove by circuit.

O2 - Transfer by lung.

  • 1978 Gattinoni.

 Oxygenation by entrainment

C PAP.

  • FRC-kept normal.

L FPPV+PEEP

  • CO2- Removed – Veno –Venous circuit.
  • Less ventilatory P- less barotrauma.
  • More lung rest.
slide26

ECCO2R

  • Less circuit as compared to ECMO.
  • Less flow 1-1.5L/min=2.5L/m2/min.
  • Less heparinisation.
  • Modification – hemofilteration.
  • >85% HCO3  metabolic acidosis.
  • Direct base = THAM, NaoH.
  • Indirect = acetate & lactate.
  • Complications.
  • Bleeding.
  • Platelet consumption.
slide27
IVOX

“Gas exchange without

Extracorporeal circuit”

  • Hollow fibre gas transfer membranes.
  • Gas exchange.
    • Surface area-fibre bundles.(0.21-0.52m2) Ext. diameter = 7-10mm.
    • Gas flow.
    • Venacava blood flow.
    • HB.
slide28

IVOX

  • Gas transfer=100mIO2 and 75ml CO2/min.
  • Indications.
    • Reversible pathology.
    • Patient waiting for lung transplant.
    • Shunt fraction >25% <35%.
    • IVC>15 mm.
    • NO-systemic bacteraemia.
    • NO-coagulopathy.
ventilation in liquid phase
VENTILATION IN LIQUID PHASE

“Hysteresis” phenomenon observed during Insuflation of lungs is due to surface “tension” effect, which can be eliminated by substituting saline to the air.

CHARACTERISTICS OF LIQUID:

  • Stable
  • Absence of toxicity
  • High Solubility for O2 & CO2
  • Low Surface tension
  • Should not locally suplant surfactant
  • Should not be absorbed capillans/Lymph
  • Expelled by lungs.
slide30

VENTILATION IN LIQUID PHASE

  • Example:
  • - “Fluorocarbon”
  • - Density 1.76 mg/ml
  • - Surface tension -15 dynes/cm
  • ADVANTAGES:
    • Uniform expansion.
    • Uniform Gas exchange.
    • Improvement of compliance
high frequency ventilation
HIGH FREQUENCYVENTILATION

Adverse effects of LFPPV

1. Time constant = C o< R

Barotrauma

2. CO O2 delivery

Tissue perfusion

Use of modes

Definition

“Ventilation above 4 times the normal rate for the subject”

  • Adult =15x4=60 (1Hz/min).
  • Neonate=30x4=120 (2Hz/min)
high frequency ventilation32
HIGH FREQUENCYVENTILATION

GOALS

“Reduction in transpulmonary

pressure difference”

Smaller Vt   Peak & Mean airway pressure

 Barotrauma.

 Reduction of Co.

mode of high frequency ventilation
MODE OF HIGH FREQUENCYVENTILATION
  • HFPPV - Oberg & Sjostrand
  • HFJV - Klain & Smith
  • HFO - Lunken Heimer

VTMode Frequency min-1 ml/kg.

HFPPV 60-120 (1-2 Hz) 3-5

HFJV 60-240 (1-4 Hz) 2-5

HFO 180-1200 (3-20Hz) 1-3

physiological effects
PHYSIOLOGICAL EFFECTS

1. GAS EXCHANGE

VD/VT  efficiency (Large min v.)

ARTERIAL OXYGENATION

    • F102
    • VA (Alveolar Ventilation)
    • Lung Volume

2. AIRWAY PRESSURES

  • VT airway  airway P. Transpulmonary P.

I:E Ratio

  • Normocapnoea + F  airway P depends
slide35

PHYSIOLOGICAL EFFECTS

1. Pressure generator - mean P. Constant.

FVT peak airway P.

Intrinsic PEEP,

V.Mode

airway pressure

PEEPimprove oxygenation

2. Flow generator  peak mean

ENP P. & F above Initial FPPV

slide36
3. VENTILATION

Lung volume (intrinsic PEEP).

Thoracic compl.

3. Factors

Intrinsic.

T. Compliance.

Even distribution (Time constant)

4. VENTILATORY DRIVE

Reflex suppression

1. Vagal afferents.

2. non -vagal afferents.

Cause = Lung Volume

frequency

Advantage = less sedation required

slide37

5. CIRCULATION

    • BP.
    • Pulmonary P.
    • CVP
    • Intra-Pulmonary shunt
    • Fluctuations in P.
    • Fluctuations in ICP.
    • Urine flow.

Unchanged

physiological basis of gas transport
PHYSIOLOGICAL BASIS OF GAS TRANSPORT
  • Across alveolar capillary membrane independent of mode of ventilation.
  • From alveoli to mouth.
    • Low F. large V. -VT>VD no problem.
    • High F. low volume.

1. VT>VD=if normocpnic

(F=15-75)

VT(70%)VD (50%)

VD/VT Ratio (0.6-0.8)

Necessitate MV o< Freq needed.

slide39

PHYSIOLOGICAL BASIS OF GAS TRANSPORT

2. VT=VD

(120-300)

Effective VD<VD anat.

VT exceeds VD anat by 1.2

 Conductive G. trans P.

VT 0.8-1.2 VD anat.

Eff. VD<VD anat.

vt vd
VT < VD

(F300-2400) (VD:VT = 1.2-2.0)

4- additional Gas Transport Mechanisms

1. Direct alveolar ventilation.

2. Pendeluft.

3. Convective Streaming.

4. Augmented (Taylorian) dispersion.

slide41

VT < VD

BEST FREQUENCY 60-1201 min

• Anaesthesia - airway surgery

- lung surgery

• Management of high compliance conditions

- Broncho - P. Fistula

- Bullous emphysenia

• Weaning from ventilation

clinical applications
CLINICAL APPLICATIONS

1. ANAESTHESIA

a. Surgery on Conducting airways & Lungs

b. Laryngoscopy, microsurgery, Laser surgery on larynx

  c. Tracheal resection & tracheostomy

d. Bronchoscopy.

2. RESUSCITATION

Percutaneous Trannstracheal Jet Ventilation

with 100% O2.

- Direct delivery of 02 below cords.

- Intrinsic PEEP.

- Pulsatile Expired gas flow prevent

aspiration.

slide43

CLINICAL APPLICATIONS

3. ICU

Broncho-pleural fistula.

4. OTHER ADVANTAGES

- Weaning

- Endobronchial Sunction

differential lung v
DIFFERENTIAL LUNG V
  • WHOLE – L.V.
  • LOBAR – V.

WHY DLV - NEEDED?

    • Variable Time Constant
    • TC = R o< C
approaches to improve survival in severe ards
APPROACHES TO IMPROVE SURVIVAL IN SEVERE ARDS

1. Improvement of basic ventilatory regimen PCV+PEEP+Permisive hypercapnoea.

2. Adjunctive supportive measures.

- Body position changes.

- Reduction of pulmonary oedema.

3. Sophisticated ventilatory measures.

- DLV.

- HFJV.

4. Future therapeutic approaches.

- Selective manipulation of pul blood flow e.g. inhalation of nitric oxide.

- Artificial surfactant.

- Intravascularr oxygenation (IVOX).

head injury
HEAD INJURY
  • Coma – GCS<8
    • NOT
      • Obeying
      • Speaking.
      • Eye opening.
  • Loss of protective laryngeal reflexes.
  • Ventilatory in-sufficiency.
    • Hypoxaemia

(PaO2 <9KPa on air.

<13KPa on O2.

    • Hypercarbia PaCO2>6kPa.
  • Spontaneous hyperventilation
    • PaCO2<3.5Kpa.
  • Respiratory arrhythmias.
head injury inidcations
HEAD INJURY - INIDCATIONS

BEFORE TRANSFER

  • Deteriorating conscious level.
  • Bilateral fracture mandible.
  • Copious bleeding in mouth.
  • Seizures.
ippv indications
IPPV Indications

COPD-Failure

“Failure of conservative treatment”

Hypoxia

Acidosis

Worsening Respiratory m fatique.

Non-arousable somnohance

PaO2<50 with O2 therapy but

PH not<7.26

cmv initiation
CMV INITIATION
  • Mode of ventilation.
  • Inflation volume.
  • Respiratory rate.
  • Inspired O2 level.
how to initiate cmv
HOW TO INITIATE CMV
  • Choose suitable ventilator mode.
  • Adjust FIO2=1.0 target SPO2.
  • Adjust VT 8-10 ml/kg – avoid high PIP.
  • Choose respiratory rate.

Mi ventilation.

  • Use PEEP in diffuse lung disease.
  • High PIP>60cm H2O.
  • High Palv >35cm H2O.
  • Maintain DO2.
    • HB.
    • CO.
    • SaO2.
  • Consider – sedation, analgesia, change of position.

Target PH not PCO2

Concern Flow rate

VT

goals
GOALS
  • Ensure-optimum O2 delivery.
  • Effective & appropriate ventilation.
  • Decrease work of breathing.
slide53
PEEP
  • Improve oxygenation.
  • Improve gas exchange.
    • Recruiting atelactasis.
    • Recrutig non-functioning alveoli.
  • Improve compliance.
  • Improve FRC.
  • Decrease shunt fraction.
  • Decreases pulmonary oedema.
adverse effect peep
ADVERSE EFFECT-PEEP
  • Non-uniform lung injury.
    • Worsen oxygenation PO2.
    • Worsen ventilation PCO2.
  • Hypotension.
  • Barotrauma.
initiation of peep
INITIATION OF PEEP
  • Initiation at 5cmH2O.
  • Increments 2-3 cmH2O.
  • Maximum 15cmH2O.
  • Monitor.
    • BP.
    • HR.
    • PaO2.
specific clinical situations
SPECIFIC CLINICAL SITUATIONS

A. Respiratory Distress Syndrome.

Adequate oxygenation

Adequate DO2.

Goals Work of breathing.

Avoid excessive PIP.

Avoid high FIO2.

Settings

PCMV

PCMV+PEEP

PCMV+IRV

specific clinical situations57
SPECIFIC CLINICAL SITUATIONS

B. Obstruction airway disease.

Support oxygenation.

Goals Assist ventilation

Approximate PH.

Settings

  • VT-initial 8-10ml/kg
  • I:E ratio-avoid-PEEPI.
  • Barotrauma-caution.
  • Reduce RR&VT expiratory time.
  • Aggressive obstruction management.
specific clinical situations58
SPECIFIC CLINICAL SITUATIONS

C. Asymmetric Lung Disease.

  • Time constant
    • Mechanical effect.
    • V/Q ratio.
  • Standard principals.
  • Result dependent change.
  • Less involved lung.
    • Dependent position.
  • DLV.
specific clinical situations59
SPECIFIC CLINICAL SITUATIONS

D. congestive Heart Failure.

 Work of breathing.

 Load on heart

Goals

 Oxygenation

 Pul. Oedema.

Strategy.

  • IPPV.
  • SQUARE WAVE PATTERN
  • PEEP.
specific clinical situations60
SPECIFIC CLINICAL SITUATIONS

E. Myocardial Ischaemia.

Work of breathing.

Goals

DO2

Strategy

  • As for CHF
specific clinical situations61
SPECIFIC CLINICAL SITUATIONS

F. Neuromuscular disease.

“Intact respiratory drive”

  • Higher VT:
    • Avoid air hunger.
    • Dyspnea sensation.
  • 10-12ml/kg
  • Ventilate - Normal PH.
monitoring cmv
MONITORING CMV
  • Chest radiograph.
    • Post intubation.
    • Deterioration.
  • Blood gases.
  • Vital signs.
  • Inspiratory pressures.
  • Pulse oxymetry.
  • Ventilator alarms.
acute hypotention cmv
ACUTE HYPOTENTION CMV
  • Negative to positive intrathoracic pressure.
  • Tension pneumothroax
    • Clinical
    • X-ray
  • Auto-PEEP.
    • Hypotension.
    • Intrathoracic P.
    • Manometer dial.
    • condition.
  • Acute myocardial ischaemia/infarction.
    • ECG