summary of major scientific advancements since 2006 roadmap l.
Skip this Video
Loading SlideShow in 5 Seconds..
Summary of Major Scientific Advancements since 2006 Roadmap PowerPoint Presentation
Download Presentation
Summary of Major Scientific Advancements since 2006 Roadmap

Loading in 2 Seconds...

play fullscreen
1 / 25

Summary of Major Scientific Advancements since 2006 Roadmap - PowerPoint PPT Presentation

  • Uploaded on

We are gathering the major scientific advances in heliophysics that have occurred since the last roadmap ... IBEX will have a strong energetic particle population to detect ...

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

Summary of Major Scientific Advancements since 2006 Roadmap

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
    Presentation Transcript
    1. Summary of Major Scientific Advancements since 2006 Roadmap Justin kasper (Harvard-smithsonian) Geoff reeves (lanl) Nasa heliophysics town hall meeting May 19, 2008

    2. Purpose and outline • We are gathering the major scientific advances in heliophysics that have occurred since the last roadmap • Goals • Identify the most compelling heliophysics so we are able to present the strongest case possible in our revised roadmap • Identify observational gaps prohibiting discovery • Determine if changes need to be made in Research Focus Area organizational structure • This presentation • Not going to try and review all Heliophysics accomplishments since 2006! • Describe the review process • Solicit input • Present several examples • Explain the splinter session goals

    3. Heliophysics Research Elements in 2005 • Heliophysics sorted into Research Focus Areas (RFAs) • Full review of the RFAs will be presented this afternoon by Lynn Kistler, so just a summary here • F: Open the Frontier to Space Environment Prediction • Magnetic reconnection, particle acceleration, dynamos • H: Understand the Nature of Our Home in Space • Disturbances, solar input and climate • J: Safeguard the Journey • Radiation extremes, early warning

    4. Assessment Strategy - Input • Recent discoveries and recently appreciated work • Observations, models, theory • Need more input on models and theory • Sources of input • Senior Review • Each mission requested to submit summary of recent accomplishments • Literature reviews • Committee knowledge • Community input • Created email address:

    5. Assessment Strategy - Analysis • Created spreadsheet to track accomplishments • Sort by Research Focus Area • For each result • Short description • Identify primary topic addressed by result • Secondary topics addressed • Contributing missions (include theory and model as “missions”) • References

    6. Highlights and Emerging Themes • Discoveries at the boundaries of the heliosphere • Magnetic reconnection • Multi-spacecraft research

    7. Discoveries at the boundaries of the heliosphere • Three examples of recent discoveries • Voyager spacecraft crossed the termination shock • AIM sees formation of H2O regions over broad range in altitude • SOHO produces statistical evidence of g-modes at 3-sigma level • Results, new questions

    8. Initial AIM observations of Polar Mesopheric Clouds (PMCs) CIPS image on July 10, 2007 showing an ice void When the AIM observatory was launched on April 25, 2007, the science focus was on a thin (~1.5 km thick) visible ice cloud layer centered at ~ 83 km above the earth surface known as PMCs. What was found in the first season of observations was a previously suspected but never before seen population of very small ice particles that exist over a much broader altitude range. Large regions virtually devoid of ice suggest that the mesosphere may share some of the same dynamical processes that are responsible for weather near the surface.

    9. The Termination Shock • Voyager 1 crossed termination shock in December 2006 • Anomalous cosmic ray source not seen! • Voyager 2 crossed in August of 2007 • Termination shock is deformed • Plasma heating is 10x low and the outflow is 2x too fast! • Implications • Radiation plays significant role in termination shock physics • Voyager 2 will cross the heliopause within a decade • IBEX will have a strong energetic particle population to detect

    10. A Statistical Detection of G-modes • Helioseismology is the inference of solar interior properties through the observation of oscillations on the solar surface • Travelling waves probe sound speed, temperature, velocity at different depths • G-modes have never been seen, but if detected would probe the solar core • Global Oscillation at Low Frequency (GOLF) instrument on SOHO • Instead of looking for an individual ripple, they looked for the signature of the cumulative effect of a large number of these ripples separated by about 24 minutes. • They combined ten years of data from GOLF and then searched for any hint of the signal at 24 minutes. They found it. “We must be cautious but if this detection is confirmed, it will open a brand new way to study the Sun’s core,” says García. • Until now, the rotation rate of the solar core was uncertain. If the GOLF detection is confirmed, it will show that the solar core is definitely rotating faster than the surface. • important constraint for investigating how the entire Solar System formed • because it represents the hub of rotation for the interstellar cloud that eventually formed the Sun and all the planets, asteroids, etc., around it

    11. Magnetic reconnection • The 2005 Roadmap called for the discovery of magnetic reconnection across the heliosphere • Reconnection is ubiquitous: • Within the solar corona (flares and coronal holes) • Interplanetary space (CMEs and quiet solar wind) • Magnetosphere

    12. Coronal Magnetic Reconnection

    13. Magnetospheric Reconnection • Comparison between the observed (left panel) and simulated (right panel) plasma and field profiles of Rumba (Cluster-1) crossing the reconnection electron jet close to a reconnection site. • January 2003, the four Cluster satellites were crossing the magnetosheath when they encountered an electron diffusion region. • Cluster confirmed the existence of an elongated electron diffusion region • The length observed by Cluster is 3000 km, or 300 times longer than the earlier theoretical expectations T. Phan (Berkeley); M. Shay (Delaware)

    14. Reconnection Exhausts in the Solar Wind 2D projection Br Vr Bt Vt Bn Vn J. Gosling (LANL)

    15. Statistical Studies of IP Reconnection Rate vs solar wind conditions No energetic particles! J. Gosling (LANL)

    16. Multispacecraft studies • Reconnection exhaust observed by five spacecraft • Reconnection exhaust is very stable and geometrically simple • Gosling et al. (2007) • Halloween 2003 CMEs observed by entire Heliophysics Great Observatory • Are there equivalent solar minimum heliosphere observations? • Strong correlation between spectra of hard x-ray bursts (RHESSI) and interplanetary electrons (Wind) indicating common source • First stereo STEREO observations • Filaments • Coronal Mass Ejections • Co-rotating interaction regions

    17. Food for thought

    18. Snapshot of current study

    19. Format of the First Splinter Session 10:30 – 12:30 Today

    20. The First Splinter • The purpose of the first splinter group is to receive input from the community on the following questions: • In your view, what is the most compelling and enabling science that will advance Heliophysics in the next 5-10 years? • In the next 10-20 years? • Your participation will help us: • Lead with the most compelling science • Identify any game-changing recent results • develop better ways to portray our Heliophysics goals and long-term strategy.

    21. We will divide the main room into three smaller rooms, and meet around the tables for two one-hour sessions. • In the first hour we will discuss what our short term scientific goals should be, based on recent results and our current understanding of the Heliosphere. • In the second hour we will examine our longer-term scientific strategy and develop ways to portray this strategy.

    22. Mission timelines portray

    23. Summary • Help us identify any missing pieces to this story • Spacecraft not under senior review • Guest Investigator and other independent research • Are advances in some fields not captured by this process (aerobraking, exoplanets…) • Resources • Electronic copy of spreadsheet available • Comments and suggestions greatly appreciated •