210 likes | 221 Views
Text Analytics has emerged as a tool that can be applied to any customer material, such as product reviews and chats, as well as content that pertains to consumers, be it about them or affects them<br><br>
E N D
TEXT ANALYSIS INRETAIL
Theretailbusinessoperatesinan extremelycomplexmarketingandsales landscape, withplatformsrangingfrom traditionalstorestoe-commerce websitesthelatterofwhichisrapidly rising.
Dayafterday, moreconsumers turntoeCommerceplatformsto acquiretheiritemsor, atthevery least, togatherotherconsumers’ thoughtsbeforevisitingastore mostdailyusersreadreviews beforemakingapurchase decision.
Whileaccesstowhatcustomersaresayingisno longerdifficult, findingthetimetoread, analyze, understand, andcategoriesthatdata isnearlyimpossible — especiallywhenfirms attempttodosowithinformationfrommany datasources.
y y Thisiswheretext analyticscomesin. Asa result, dataisbeing generatedatan unprecedentedrate, and itssignificanceis expanding.
Thistypeofdatacanbeanalyzedmanually aslongasaprocessisinplace, butit becomesincrediblydifficulttoconductwhen biggersubsetsofdataareinvolved, particularlythosefromdifferentstructures andtypes. Spendingthetroubletoexamine eachtextindetailandrelateittothecontext untilpatternsarediscoveredbecomescostly andpronetoinaccuracy.
Asaresult, TextAnalyticshas emergedasatoolthatcanbe appliedtoanycustomermaterial, suchasproductreviewsandchats, as wellascontentthatpertainsto consumers, beitaboutthemor affectsthem — suchasreviewsor blogentries.
ApplicationofText AnalysisintheFood Industry
Textanalysiscanhelp e-commercesitestogain extensiveinsightsintotheir customers’ behaviorand intentions, whichcanthenbe usedtodrivesales.
Trackingthesentimentofany newproductlaunches, from whereverthefeedbackand opinionsmayappear.
Theinsightsgatheredfromthis analysisareusedtoidentify problemareasandsuggest improvementactions.
Targetmarketsurveyscan benefitanyconsumeractivity, andtextanalysisallowsyouto examineopen-ended questions.
Retailownerscanswiftly examinethousandsoftext- heavysurveysandevaluations toimprovetheirservices.
SomeCommon MethodsofAnalyzing TextsinRetail
Intent Detection Youcananalyzetext datatoidentifythe intentofthecustomersto classifyandprioritize customerticketsbased onintent. Ithelpsin identifyingcustomers withpurchaseintent alongwithnew prospectivecustomers.
Sentiment Analysis Analysisofthefeedback, opinions, andsuggestionsof customerscompiledfrom multipleforumsandsocial mediaplatformscanbe easilydonewithsentiment analysis. Youcanidentifyand categorizethesentimentsof usersandaccessyourmarket reputation.
Entity Extraction Youcanleverageentity extractiontoextractnamed entitiesfromthesearch queriestounderstandwhat yourcustomersarelooking for. Withityoucanoffer productsandsolutions accordingtotheir requirements.
Emotion Analysis Youcanextractcustomer supportdatarelatedtoyour brandoryourcompetitors andanalyzetheemotions expressedinthetextto identifysatisfiedcustomersas wellasthosethatareworth retaining.
Semantic Similarities Withsemanticsimilaritiesyou canunlockmarketintelligence withtextanalytics. Compareall competitiveproductsand solutionsandcheckhowclose theyaretoeachother.
BytesView’stextanalyticssolutioncan helpyouprocessandanalyzetextdata frommultiplesources. Turnreviews, suggestions, socialmediaposts, news, etc., into actionableinsights. Listentoyourcustomers, understandtheirneeds aswelltheirdislikesandtransformitintosourcesoffocused improvement.