E N D
MA417Spring2021 Investmentand Insurance 2/22-3.........................1/11
Consider AsetoflotteriesL(X) A setofactionsA AnagentwithBernoullifunctionu. Everyactiona∈Aofthis agentleadstoalotteryLa∈L(X). Theagentwantstochoosetheactiona∗thatwillleadtothe mostpreferredlotteryL∗.
The problem of theagent; Maxa∈AELa(u) Examples:InsuranceandInvestmentinRiskyAssets.
Investmentin Risky Asset AriskaverseagenthasaBernoullifunctionu(x) TheagenthaswealthWdollarsthatcanbeinvestedintwo assets Ariskyasset:returnsR1withprobabilityqandR0with probability1−q Asafeasset:withareturnrateofzero(e.g.keepthemoneyas “cash”) Theagentneedstodecidehowmuchtospendineachasset.
Problem1 Letabethe amountinvestedintheriskyasset. Maxa∈[0,W]qu((1+R1)a+W−a)+(1−q)u((1+R0)a+W−a) To find the optimal amount a∗ that the agent invests in the risky asset, we take the derivative with respect to a, set it to zero and thensolvefora. Thisgiveusa∗afunctionofR1,R0,q,andW.
Problem1 Letabethe amountinvestedintheriskyasset. Maxa∈[0,W]qu((1+R1)a+W−a)+(1−q)u((1+R0)a+W−a) To find the optimal amount a∗ that the agent invests in the risky asset, we take the derivative with respect to a, set it to zero and thensolvefora. Thisgiveusa∗afunctionofR1,R0,q,andW. 2/22-3.........................5/11
Problem1 Letabethe amountinvestedintheriskyasset. Maxa∈[0,W]qu((1+R1)a+W−a)+(1−q)u((1+R0)a+W−a) To find the optimal amount a∗ that the agent invests in the risky asset, we take the derivative with respect to a, set it to zero and thensolvefora. Thisgiveusa∗afunctionofR1,R0,q,andW. 2/22-3.........................5/11
Problem1 Letabethe amountinvestedintheriskyasset. Maxa∈[0,W]qu((1+R1)a+W−a)+(1−q)u((1+R0)a+W−a) To find the optimal amount a∗ that the agent invests in the risky asset, we take the derivative with respect to a, set it to zero and thensolvefora. Thisgiveusa∗afunctionofR1,R0,q,andW.
Problem2 Letαbethe fractionofWthatyouinvestintheriskyasset. Thetochosetheoptimalα,theagentmustsolve MAXα∈[0,1]qu(W+αWR1)+(1−q)u(W+αWR0) Tofindtheoptimalα∗asafunctionofW,q,R1, andR0wehave totakethederivativewithrespecttoαandandsetittozero, andsolveforα. 2/22-3.........................6/11
Problem2 Letαbethe fractionofWthatyouinvestintheriskyasset. Thetochosetheoptimalα,theagentmustsolve MAXα∈[0,1]qu(W+αWR1)+(1−q)u(W+αWR0) Tofindtheoptimalα∗asafunctionofW,q,R1, andR0wehave totakethederivativewithrespecttoαandandsetittozero, andsolveforα. 2/22-3.........................6/11
Problem2 Letαbethe fractionofWthatyouinvestintheriskyasset. Thetochosetheoptimalα,theagentmustsolve MAXα∈[0,1]qu(W+αWR1)+(1−q)u(W+αWR0) Tofindtheoptimalα∗asafunctionofW,q,R1, andR0wehave totakethederivativewithrespecttoαandandsetittozero, andsolveforα. 2/22-3.........................6/11
Theimpactofwealthonα∗anda∗ Wecompute∂α∗ and∂a∗ ∂W ∂W Foru(x)=ln(x),thefirstpartialis0andthesecondis>zero.
InterpretationofAu(x): IfAu(x)isanincreasingfunctioninx,then∂a∗<0 ∂W IfAu(x)isandecreasingfunctioninx,then∂a∗>0. ∂W 2/22-3.........................8/11
InterpretationofAu(x): IfAu(x)isanincreasingfunctioninx,then∂a∗<0 ∂W IfAu(x)isandecreasingfunctioninx,then∂a∗>0. ∂W 2/22-3.........................8/11
InterpretationofRu(x) IfRu(x)isanincreasingfunctioninx,then∂α∗<0. ∂W IfRu(x)isandecreasingfunctioninx,then∂α∗>0 ∂W 2/22-3.........................9/11
InterpretationofRu(x) IfRu(x)isanincreasingfunctioninx,then∂α∗<0. ∂W IfRu(x)isandecreasingfunctioninx,then∂α∗>0 ∂W 2/22-3.........................9/11
RevisitingInsurance AriskaverseagentwithwealthlevelWandBernoullifunction u. Listheamountofpotentiallosswithprobabilityp Thecostofinsuranceiscper1perdollarinsured( Forexample,fullinsurancewillcostatotalofcL 0≤z≤Listheamountinsured.Theagentchoosesthevalue ofz. Fullinsurancemeansz=L 2/22-3.........................10/11
EverychoicezleadstoalotteryLzthatgivestheagentwealth W− L + z − cz with probability p and W− cz with probability 1−p Tofindtheoptimalz,theagentsolves; Maxzpu(W−L+z−cz)+(1−p)u(W−cz) 2/22-3.........................11/11