1 / 19

Slides 2

Use this: These are slides 2

11542
Download Presentation

Slides 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2/22-3.........................1/11

  2. MA417Spring2021 Investmentand Insurance 2/22-3.........................1/11

  3. Consider AsetoflotteriesL(X) A setofactionsA AnagentwithBernoullifunctionu. Everyactiona∈Aofthis agentleadstoalotteryLa∈L(X). Theagentwantstochoosetheactiona∗thatwillleadtothe mostpreferredlotteryL∗.

  4. The problem of theagent; Maxa∈AELa(u) Examples:InsuranceandInvestmentinRiskyAssets.

  5. Investmentin Risky Asset AriskaverseagenthasaBernoullifunctionu(x) TheagenthaswealthWdollarsthatcanbeinvestedintwo assets Ariskyasset:returnsR1withprobabilityqandR0with probability1−q Asafeasset:withareturnrateofzero(e.g.keepthemoneyas “cash”) Theagentneedstodecidehowmuchtospendineachasset.

  6. Problem1 Letabethe amountinvestedintheriskyasset. Maxa∈[0,W]qu((1+R1)a+W−a)+(1−q)u((1+R0)a+W−a) To find the optimal amount a∗ that the agent invests in the risky asset, we take the derivative with respect to a, set it to zero and thensolvefora. Thisgiveusa∗afunctionofR1,R0,q,andW.

  7. Problem1 Letabethe amountinvestedintheriskyasset. Maxa∈[0,W]qu((1+R1)a+W−a)+(1−q)u((1+R0)a+W−a) To find the optimal amount a∗ that the agent invests in the risky asset, we take the derivative with respect to a, set it to zero and thensolvefora. Thisgiveusa∗afunctionofR1,R0,q,andW. 2/22-3.........................5/11

  8. Problem1 Letabethe amountinvestedintheriskyasset. Maxa∈[0,W]qu((1+R1)a+W−a)+(1−q)u((1+R0)a+W−a) To find the optimal amount a∗ that the agent invests in the risky asset, we take the derivative with respect to a, set it to zero and thensolvefora. Thisgiveusa∗afunctionofR1,R0,q,andW. 2/22-3.........................5/11

  9. Problem1 Letabethe amountinvestedintheriskyasset. Maxa∈[0,W]qu((1+R1)a+W−a)+(1−q)u((1+R0)a+W−a) To find the optimal amount a∗ that the agent invests in the risky asset, we take the derivative with respect to a, set it to zero and thensolvefora. Thisgiveusa∗afunctionofR1,R0,q,andW.

  10. Problem2 Letαbethe fractionofWthatyouinvestintheriskyasset. Thetochosetheoptimalα,theagentmustsolve MAXα∈[0,1]qu(W+αWR1)+(1−q)u(W+αWR0) Tofindtheoptimalα∗asafunctionofW,q,R1, andR0wehave totakethederivativewithrespecttoαandandsetittozero, andsolveforα. 2/22-3.........................6/11

  11. Problem2 Letαbethe fractionofWthatyouinvestintheriskyasset. Thetochosetheoptimalα,theagentmustsolve MAXα∈[0,1]qu(W+αWR1)+(1−q)u(W+αWR0) Tofindtheoptimalα∗asafunctionofW,q,R1, andR0wehave totakethederivativewithrespecttoαandandsetittozero, andsolveforα. 2/22-3.........................6/11

  12. Problem2 Letαbethe fractionofWthatyouinvestintheriskyasset. Thetochosetheoptimalα,theagentmustsolve MAXα∈[0,1]qu(W+αWR1)+(1−q)u(W+αWR0) Tofindtheoptimalα∗asafunctionofW,q,R1, andR0wehave totakethederivativewithrespecttoαandandsetittozero, andsolveforα. 2/22-3.........................6/11

  13. Theimpactofwealthonα∗anda∗ Wecompute∂α∗ and∂a∗ ∂W ∂W Foru(x)=ln(x),thefirstpartialis0andthesecondis>zero.

  14. InterpretationofAu(x): IfAu(x)isanincreasingfunctioninx,then∂a∗<0 ∂W IfAu(x)isandecreasingfunctioninx,then∂a∗>0. ∂W 2/22-3.........................8/11

  15. InterpretationofAu(x): IfAu(x)isanincreasingfunctioninx,then∂a∗<0 ∂W IfAu(x)isandecreasingfunctioninx,then∂a∗>0. ∂W 2/22-3.........................8/11

  16. InterpretationofRu(x) IfRu(x)isanincreasingfunctioninx,then∂α∗<0. ∂W IfRu(x)isandecreasingfunctioninx,then∂α∗>0 ∂W 2/22-3.........................9/11

  17. InterpretationofRu(x) IfRu(x)isanincreasingfunctioninx,then∂α∗<0. ∂W IfRu(x)isandecreasingfunctioninx,then∂α∗>0 ∂W 2/22-3.........................9/11

  18. RevisitingInsurance AriskaverseagentwithwealthlevelWandBernoullifunction u. Listheamountofpotentiallosswithprobabilityp Thecostofinsuranceiscper1perdollarinsured( Forexample,fullinsurancewillcostatotalofcL 0≤z≤Listheamountinsured.Theagentchoosesthevalue ofz. Fullinsurancemeansz=L 2/22-3.........................10/11

  19. EverychoicezleadstoalotteryLzthatgivestheagentwealth W− L + z − cz with probability p and W− cz with probability 1−p Tofindtheoptimalz,theagentsolves; Maxzpu(W−L+z−cz)+(1−p)u(W−cz) 2/22-3.........................11/11

More Related