1 / 29

NFMC Collaboration Meeting IIT

NFMC Collaboration Meeting IIT. Muon (Pre)Acceleration for 8 GeV Proton Driver Linac. Milorad Popovic http://www-popovic.fnal.gov/ FNAL 14-March 2006. Two Design Points for 8 GeV Linac. Initial: 0.5 MW Linac Beam Power (BASELINE) 8.3 mA x 3 msec x 2.5 Hz x 8 GeV = 0.5 MW

zuriel
Download Presentation

NFMC Collaboration Meeting IIT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NFMC Collaboration Meeting IIT Muon (Pre)Acceleration for 8 GeV Proton Driver Linac Milorad Popovic http://www-popovic.fnal.gov/ FNAL 14-March 2006 M. Popovic

  2. Two Design Points for 8 GeV Linac • Initial: 0.5 MW Linac Beam Power(BASELINE) • 8.3 mA x 3 msec x 2.5 Hz x 8 GeV = 0.5 MW • Twelve Klystrons Required • Ultimate: 2 MW Linac Beam Power • 25 mA x 1 msec x 10 Hz x 8 GeV = 2.0 MW • 33 Klystrons Required • Either Option Supports: 1.5E14 protons/pulse • Using Main Injector or Recycler as storage ring • Assuming 1% Muon collection, there will be 25mA 10 uS • Muon pulse that 7 GeV Linac can accelerate M. Popovic

  3. SC H- Linac from 1.2 to 8GeV M. Popovic

  4. Linac +Return Arcs M. Popovic

  5. 25mm-mrad Norm RMS M. Popovic

  6. Paper from Linac2000 XX International Linac Conference, Monterey, California 2GeV SUPERCONDUCTING MUON LINAC Milorad Popovic Fermi National Accelerator Laboratory Batavia, IL 60510, USA Abstract A muon collider as well as a neutrino factory requires a large number of muons with a kinetic energy of 50GeV or more. Muon survival demands a high gradient linac. The large transverse and longitudinal emittance of the muon beam coming from a muon cooling system implies the need for a large acceptance, acceleration system. These two requirements point clearly to a linac based on superconducting technology. The design of a 2GeV Superconducting muon Linac based on computer programs developed at LANL will be presented. The design is based on the technology available today or components that will be available in the very near future. M. Popovic

  7. 325MHz 3-Cell SCavity Cavity R=45cm, Bore R=20cm, External pipe 40cm Energy Gain 21 MeV/Cavity Phase Ramp from -40 to -5 Degree M. Popovic

  8. FODO CELL Cell Length =2*271cm, Magnet Length =35cm Quad Gradient from 100 to 200 Gauss/cm M. Popovic

  9. X,Y, Phys Beam Envelopes M. Popovic

  10. Transverse Emittance • Study II, Transverse Beam Emittance, 3mm, 1s, Normalized • 3000 mm-mrad • Beam size; 200mrad, 10mm, 1s @ 200MeV/c • Muons Inc, Transverse Beam Emittance, • 3 mm-mrad, 2s, Normalized • Beam size; 2mrad, 1mm, 2s @ 200MeV/c Cryo module, ~5 meters, 325MHz This is really acceptance of the channel, emittance should be specified after energy is known. M. Popovic

  11. Emittances, Parmila cell ngood plane emittance (cm-mrad),(deg-MeV) alpha beta(u) rms(u) max 100% 90% rms(n) (cm/mrad), x or y x or y deg/MeV) (cm) (cm) Input Beam010000 x-xp 702.90313 542.81085 134.44371 -0.00159 0.150000 3.4641 7.6438 y-yp 699.41044 536.46265 134.43337 0.28745 0.804460 8.0220 17.8884 phi-w 264.30970 202.06476 49.99906 0.00635 2.50005711.1804 0.0000 Out Beam130 10000 x-xp 918.97732 562.67982 137.82525 -0.11259 1.710652 4.7150 11.7815 y-yp 798.94995 536.80035 134.96394 -0.03086 1.221081 3.9420 9.0929 phi-w 318.41574 205.29719 50.75104 0.07731 0.476035 4.9152 0.0000 M. Popovic

  12. Input & Output Beam, Parmila Beam Out of First Cavity x-x’ y-y’ Output Beam x-x’ y-y’ x-y phi-W x-y phi-W M. Popovic

  13. Transverse Emittance • Study II, Transverse Beam Emittance, 3mm, 1s, Normalized • 3000 mm-mrad • Beam size; 200mrad, 10mm, 1s @ 200MeV/c • Muons Inc, Transverse Beam Emittance, • 3 mm-mrad, 2s, Normalized • Beam size; 2mrad, 1mm, 2s @ 200MeV/c For the Cryo module as it is now, 12meters, 1.3GHz This is really acceptance of the channel, emittance should be specified after energy is known. M. Popovic

  14. FESS Favorite Proton Linac Site M. Popovic

  15. Main Injector @2 MW 8 GeV Linac 600MeV 1.2GeV 8GeV M. Popovic

  16. Study II, Cost Estimates M. Popovic

  17. NuFact05, Frascati M. Popovic

  18. Recirculation, 21GeV Muons • Linac Beta=1 is 36*14=504 meters~1.7us • Pick Current <= 45 mA • 1012 Muons in 3.5usec pulse, 1.3GHz • Second Linac in Return Line in Future • Arks are R~50 meters • Lattice is FODO like in Linac M. Popovic

  19. Arc Lattice, Disp~0.0 M. Popovic

  20. B. Foster’s Numbers Total:Proton Linac, 8GeV $361M M. Popovic

  21. 8 Klystrons 288 Cavities in 36 Cryomodules 1300 MHz β=1 Modulator Modulator Modulator Modulator 10 MW TESLA Klystrons 36 Cavites / Klystron β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 Modulator Modulator Modulator Modulator β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 β=1 Linac M. Popovic

  22. One Cryo Module M. Popovic

  23. Neutrino “Super- Beams” SY-120 Fixed-Target Damping Rings for TESLA @ FNAL With 8 GeV e+ Preacc. NUMI Off- Axis X-RAY FEL LAB 8 GeV neutrino 8 GeV Linac ~ 700m Active Length 1% LC Systems Test Main Injector @2 MW Bunching Ring Target and Muon Cooling Channel Recirculating Linac for Neutrino Factory Neutrino Target & Long-Pulse Spallation Source? Short Baseline Detector Array VLHC at Fermilab Neutrinos to “Homestake” 8 GeV Superconducting LinacWith X-Ray FEL, 8 GeV Neutrino & Spallation Sources, LC and Neutrino Factory Anti- Proton M. Popovic

  24. Extra M. Popovic

  25. Extra M. Popovic

  26. Booster Like Storage Ring & Arks M. Popovic

  27. Cell with Injection M. Popovic

  28. Beta=0.81, Drift, Beta=1 M. Popovic

  29. Pillbox Cavity U_bunch[Joul]=5l[m]*Eo[MV/m]*Nb[1010]*10-4 M. Popovic

More Related