1 / 30

147 th Meeting of Acoustical Society of America New York, May 24 2004

Nonlinearity between acoustics and articulation in Hungarian transparent vowels Stefan Benus * Karen Kirke * Adamantios Gafos * ‡ New York University * , Haskins Labs ‡. 147 th Meeting of Acoustical Society of America New York, May 24 2004. Outline.

weinstein
Download Presentation

147 th Meeting of Acoustical Society of America New York, May 24 2004

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nonlinearity between acoustics and articulation in Hungarian transparent vowelsStefan Benus*Karen Kirke*Adamantios Gafos*‡ New York University*, Haskins Labs‡ 147th Meeting of Acoustical Society of America New York, May 24 2004 1pSC43 Transparent vowels in Hungarian VH

  2. Outline • Basic facts of transparent vowels in Hungarian vowel harmony • Experimental methods and Results • Articulatory-acoustic links 1pSC43 Transparent vowels in Hungarian VH

  3. Hungarian vowel inventory Front Back [–Round] [+Round] [–Round] [+Round] High i[i] í[i:] ü[y] ű[y:] u[u] ú[u:] Mid é[e:] ö[] ő[:] o[o] ó[o:] Low e[] á[:] a[] (Ringen & Vago 98) transparent 1pSC43 Transparent vowels in Hungarian VH

  4. Hungarian vowel harmonyDative Adessive Notes • ház 'house' ház-nak ház-nál regular harmony • b. tök 'pumpkin' tök-nek tök-nél regular harmony c. radír 'eraser' radír-nak radír-nál /í/ is transparent d. víz 'water' víz-nek víz-nél TVs usually trigger front harmony e. híd 'bridge' híd-nak híd-nál TVs exceptionally trigger back harmony f. nüansz 'nuance' nüansz-nak nüansz-nál back vowels are opaque g. parfüm 'perfume' parfüm-nek parfüm-nél front round vowels are opaque 1pSC43 Transparent vowels in Hungarian VH

  5. Focus of this presentationtransparent vowels {i, í, é} V[+back] + {i, í, é} papír-ban/*ben ‘paper.Iness’ buli-ban/*ben ‘party.Iness’ kávé-ban/*ben ‘coffee.Iness’ back suffix V[-back] + {i, í, é} zefír-*ban/ben ‘saphire.Iness’ bili-*ban/ben ‘bunny.Iness’ front suffix kadét-*ban/ben ‘cadet.Iness’ 1pSC43 Transparent vowels in Hungarian VH

  6. Motivating the present study • Over the past twenty-five years, lots of work on transparency in phonology (Clements 77, Vago 80, Anderson 80, Hulst & Smith 86, Cohn 90, Ní Chiosáin & Padgett 97, Smolensky 95, McCarthy 98, Ringen & Vago 98, Gafos 99, Baković & Wilson 00, Krämer 01, Siptár & Törkenzy 01, Kiparsky & Pajusalu 02). • Dearth of data on the phonetic side of transparency (Fónagy 66, Gordon 99, Beddor et al 01). 1pSC43 Transparent vowels in Hungarian VH

  7. Question • Well-accepted assumption in phonology: • Transparent vowels do not participate in vowel harmony, at least on the surface. • Question • How are transparent vowels articulated in different harmonic contexts (e.g. AiA vs. EiE)? • Are transparent vowels acoustically different in different harmony contexts? 1pSC43 Transparent vowels in Hungarian VH

  8. Stimuli Back context Front context [kabitom] ‘daze’ [repitm] ‘let fly’ [bulival] ‘party’ [bilivl]‘pot’ [bodetol] ‘hut’ [bidetl] ‘bidet’ …  20 pairs, 16 repetitions, suffixes shown here are 1st poss., instrumental, ablative [] ‘whistle’ [tsm] ‘address’ [tsel] ‘aim’ [sel] ‘wind’ …  8 pairs, 8 repetitions 1pSC43 Transparent vowels in Hungarian VH

  9. Methods Used ACOUSTICS to study the acoustic manifestation of the articulatory movements EMMA to image individual points of the tongue ULTRASOUND to image the whole surface of the tongue 1pSC43 Transparent vowels in Hungarian VH

  10. MethodologyEMMA (Electromagnetic Midsagittal Articulometry) • Three transmitter coils (T) • Up to 8 receiver coils (R) placed on articulators • Receivers: Tongue Tip (TT), Tongue Body (TB), Tongue Dorsum (TD), Upper Lip (UL), Lower Lip (LL), Jaw 1pSC43 Transparent vowels in Hungarian VH

  11. Methodology EMMA cont’dExample of Emma token: acél-nak 1pSC43 Transparent vowels in Hungarian VH

  12. Methodology EMMA cont’d Measurements • Measured spatial values: Frontward horizontal extrema of receivers on tongue dorsum and body. • Quantifying the effect of harmonic environment: DIFF(TD) = MAX (TD, /i/) back – MAX (TD, /i/)front e.g. DIFF(TD) = (– 23.0 mm) bulival – (– 22.5 mm) bilivel = – 0.5mm 1pSC43 Transparent vowels in Hungarian VH

  13. MethodologyUltrasound • Haskins Aloka SSD-1000 with a 3-5MHz (piezoelectric crystal) probe. • Probe placed below chin in contact with the soft area surrounded by the jaw. • UHF waves (traveling through the soft tissue) are reflected back by air or bony mass.  Tongue tip 1pSC43 Transparent vowels in Hungarian VH

  14. MethodologyAcoustics • Using LPC in Praat we measured F1, F2, F3, and F4 at the temporal midpoint of the transparent vowels • Measures of backness used • F2 • F2-F1 (Ladefoged 2001:177) • F3 affiliated with front cavity resonance for high front vowels (Kuhn 1975, Fant 1970) • F2’ perceptual measure (Schwartz et al. 1997) 1pSC43 Transparent vowels in Hungarian VH

  15. Articulation Resultsultrasound example Back environment Front environment Transparent vowels in a back harmony domain are articulated with more retraction than in a front harmony domain. 1pSC43 Transparent vowels in Hungarian VH

  16. Articulation ResultsEMMA disyllables MD: Mean Difference between front and back environments * Refers to p<0.05 For a complete discussion of results, see Benus (in prep.). 1pSC43 Transparent vowels in Hungarian VH

  17. Articulation ResultsEMMA disyllables Summary • Transparent vowels in back harmony domains ([buli-val], [tomi-hoz]) are produced further back than in front harmony domains ([bili-vl], [imi-hz]). • This is true for both subjects. 1pSC43 Transparent vowels in Hungarian VH

  18. Monosyllabic stems • Usually, monosyllabic stems with transparent vowels take front suffixes: cím ‘address(.nom)’ cím-nek ‘address.dat’ szél ‘wind(.nom)’ szél-nek ‘wind.dat’ • A limited number ( sixty) select back suffixes: síp ‘whistle(.nom)’ síp-nak ‘whistle.dat’ cél ‘aim(.nom)’ cél-nak ‘aim.dat’ 1pSC43 Transparent vowels in Hungarian VH

  19. Articulation ResultsEMMA monosyllables TVs in stems selecting [+back] suffixes are more retracted than TVs selecting [–back] suffixes. Mean difference varies (0.3-0.8mm). * p<0.05 ** p<0.001 1pSC43 Transparent vowels in Hungarian VH

  20. Articulatory results Summary • Transparent vowels are articulatorily more retracted in back harmony than in front harmony contexts. • This applies to both disyllabic and monosyllabic stems. 1pSC43 Transparent vowels in Hungarian VH

  21. Acoustics resultsF2, F2-F1 Disyllables 1pSC43 Transparent vowels in Hungarian VH

  22. Acoustics results F2, F2-F1 cont’d Monosyllables 1pSC43 Transparent vowels in Hungarian VH

  23. Acoustics results F3 Disyllables Monosyllables 1pSC43 Transparent vowels in Hungarian VH

  24. Acoustics resultsF2’ (in Bark) Disyllables Monosyllables 1pSC43 Transparent vowels in Hungarian VH

  25. Comparison of Significance of Acoustic & Articulatory Findings The effect of environment is different in articulatory and acoustic domains

  26. Articulatory-acoustic mismatch:non-linearity A system exhibits nonlinearity when it meets the the following two conditions: (i) There is little or no change in the behavior of the system, as a control parameter changes smoothly. (ii) However, as the control parameter reaches a critical value, a discontinuous change may be observed in the behavior of that system. 1pSC43 Transparent vowels in Hungarian VH

  27. Example of non-linearity: transparent vowels acoustic attribute y Transparent vowels are those vowels that can be maximally retracted without losing their perceptual identity Non-low front vowels can be retracted significantly without corresponding acoustic consequences (Stevens 1972, Wood 1982) III II I articulatory parameter x 1pSC43 Transparent vowels in Hungarian VH

  28. Conclusion Articulation Transparent vowels in back harmonic context are more retracted than in front harmonic context. Acoustics The effect of harmonic context observed in articulation is not captured by any single acoustic measure used. 1pSC43 Transparent vowels in Hungarian VH

  29. Acknowledgments our subjects, Larissa Chen, Khalil Iskarous Donka Farkas, Louis Goldstein, Doug Honorof Marianne Pouplier, Péter Siptár, Erika Solyom Anna Szabolcsi, Mark Tiede, Zsofia Zvolenszki & Funding from NIH Grant HD-01994 to Haskins Laboratories 1pSC43 Transparent vowels in Hungarian VH

  30. Selected references Beddor, P. S., Krakow, R. A., and S. Lindemann (2001)Patterns of perceptual compensation and their phonological consequences. In E. Hume and K. Johnson (eds.) The Role of Perceptual Phenomena in Phonology, 55-78. San Diego: Academic Press. Benus, S. (in prep.) Transparent vowels in vowel harmony. PhD dissertation, New York University Fant, Gunnar (1970) Acoustic theory of speech production with calculations based on X-ray studies of Russian articulations. The Hague: Mouton Fonagy, I. (1966). Iga es ige. Magyar Nyelv: 323-324. Gafos, A. (1999). The articulatory basis of locality in phonology. Garland. (1996 PhD. Dissertation, John Hopkins University.) Gordon, M. (1999). The “neutral” vowels of Finnish: How neutral are they? Linguistica Uralica1: 17-21. Kuhn, G.M. (1975) On the front cavity resonance and its possible role in speech perception. J. Acoust. Soc. Am. 58, 428 (1975) Ladefoged, Peter (2001). A Course in Phonetics, Fourth Edition. Orlando: Harcourt. Ohala, J. (1994). Hierarchies of environments for sound variation; plus implications for “neutral” vowels in vowel harmony. Acta Linguistica Hafniensia 27(2): 371-382. Perkell, J., M. Cohen, M. Svirsky, M. Matthies , I. Garabieta & M. Jackson (1992). Electromagnetic midsaggital articulometer (EMMA) systems for transducing speech articulatory movements. JASA 92: 3078-3096. Schwartz, Jean-Luc, Boe, Louis-Jean, Vallee, Nathalie & Abry, Christian, 1997. The Dispersion-Focalization Theory of vowel systems. In: Journal of Phonetics 25, 255-286. Stevens, K. (1989). On the Quantal Nature of Speech. Journal of Phonetics 17: 3-45. Wood, A.J.S. (1986). The Acoustic Significance of Tongue, Lip, and Larynx Maneuvers in Rounded Palatal Vowels. JASA 80: 391-401. Contact information: Stefan Benus Karen Kirke Adamantios Gafos sb513@nyu.edukdk214@nyu.eduadamantios.gafos@nyu.edu New York University, Dept. of Linguistics, 719 Broadway, 4th floor, New York, NY 10003

More Related