Stat st k
Download
1 / 41

İ STAT İ ST İ K - PowerPoint PPT Presentation


  • 211 Views
  • Uploaded on

İ STAT İ ST İ K. A. G E N E L B İ L G İ. A. G E N E L B İ L G İ. İ statistik , belli amacla tespit edilen verilerin objektif değerlendirilmesini sağlayan bilim dalıdır. Hedef - verilere anlam kazandırmak - veri arasındaki bağlantının olup olmadığını tespit etmek

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' İ STAT İ ST İ K' - vlad


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Stat st k

İSTATİSTİK

A. G E N E L B İ L G İ


A g e n e l b l g
A. G E N E L B İ L G İ

  • İstatistik, belli amacla tespit edilen verilerin objektif değerlendirilmesini sağlayan bilim dalıdır.

  • Hedef

    - verilere anlamkazandırmak

    - veri arasındaki bağlantının olup olmadığını tespit etmek

    - veri arasındaki farkın olup olmadığını tespit etmek


A g e n e l b l g1
A. G E N E L B İ L G İ

İstatistikte genellikle incelenen toplumdur.

İstatistikte toplum kavramsal olarak 2 gruba ayrılmaktadır

A. Evren – grubu temsil eden bireylerin tümüne denir

B. Örneklem – evreni temsil eden küçük grup


A g e n e l b l g2
A. G E N E L B İ L G İ

  • Değerlendirilmesi gereken grubun belirlenmesi

    - rast gele

    - sınırlı rast gele

    - sistemli


A g e n e l b l g3
A. G E N E L B İ L G İ

Değişken – değişebilir değerdir

Örn.: boy , ağırlık, kuvvet, ve b.

Veri – değişkenin nicel ifadesidir

Örn.: 70kg, 170cm, 7 kg/cm

Veri serisi: verilerin toplamda oluşturduduğu grup.

Örn.:55kg, 60kg, 80kg, 75kg, 70kg, 70kg, 65kg, 58kg, 68kg, 70kg, 74kg,100kg


B merkez mey l ve dagilim
B. MERKEZİ MEYİL VE DAGILIM

  • Merkezi meyil

    - ortalama

    - median

    - mod

  • Dağılım

    - yaygınlık (range)

    - frekans dağılımı

    - standart sapma


Merkezi meyil
Merkezi meyil

  • Ortalama (mean)

    - bir grup verinin averaj göstergesidir.

    M = ΣX/N, yani veri serisinin toplamı (ΣX) veri serisindeki veri sayısıyla (N) bölünerek bulunur.


Ortalama
Ortalama

Orn.: 6, 5, 10, 2, 5, 8, 5, 1 ve 3

veri serisinin ortalaması(M) =

M = (6+5+10+...)/9 = 45/9 =5.


Ortalama1
Ortalama

Kenar rakamların (veri serisinin en küçük veya en büyük rakamların) değişimiyle değişebilir

1. örn.: (6+5+10+2+5+8+5+1+3)/9=5

2. örn.: (6+5+46+2+5+8+5+1+3)/9=9

2. örnekte alınan ortalama veri serisinin kötü temsilcisidir.


Ortalama2
Ortalama

1,2,3,5,5,5,6,8,10 ortalama = 5

1,2,3,5,5,5,6,8,46 ortalama = 9


Med an
MEDİAN

  • Araştırma esnasında elde edilen veri serisinin en küçükten en büyük rakama kadar sıralaması sonrası sıranın ortasında yerleşerek veri serisini iki eşit bölüme ayıran rakamdır.


Med an1
MEDİAN

  • Örn. 1:

    Aşağıdaki 1, 2, 3, 5, 5, 5, 6, 8, 46 veri serisi için median = 5.


Med an2
MEDİAN

  • Örn. 2:

    1,2,3,4 veri serisi için median = 2+3=5, 5/2=2,5


MOD

  • Veri serisinde en sık tekrarlanan rakamdır.

  • Yukarıdaki örnekte (1, 2, 3, 5, 5, 5, 6, 8, 46) mod = 5, çünki üç kez rastlanmaktadır.


Da ilim yayg nl k range
DAĞILIM – yaygınlık (range)

Dağılımın istatistiksel hesaplanması araştırma esnasında elde edilen verilere netlik kazandırmaktadır.

Yaygınlık - veri serisinin en büyük rakamla en küçük rakam arasındaki farktır.

Örn.: sınava katılan 10 öğrencinin puanları 40, 40, 55, 75, 50, 15, 45, 65, 35, 30 olduğunda söz konusu veri serinin yaygınlığı 60’dır (75 – 15)


Da ilim da l m s kl
DAĞILIM – dağılım sıklığı

Dağılımsıklığıveyafrekansı (frequency disribution) – verilerinseridekirastlantısayısınadenir.

Dağılımsıklığıikiyöntemleuygulanmaktadır.

a. Birisigruplaşmayöntemi. Buradaverilergruplaştırılarakgösterilmektedir.

Örn.: Sınavakatılan 20 öğrenciden

31 – 50 arasıpuanalanöğrencilerinsayı 10’dır,

51 – 70 arasıpuanalanöğrencilerinsayı 6’dır ve

71 – 90 puanarasıöğrencilerinsayısı 4’dir.

b. Diğeryöntem “sap – ve – yaprak” ismitaşımaktadırve en uygunolanıdır.



Standart sapma
Standart Sapma

  • Veri serisinde yer alan değerlerin merkez rakamından uzaklığını gosteren en objektif yöntemdir.

  • Hesaplama sırasında tüm verilerin ortalamadan olan farkı tespit edilerek, tüm verileri kapsayacak bir rakam oluşur.


Standart sapma rnek
Standart sapma (örnek)

  • Sınava katılan öğrencilerin ort.± st.sap. puanı 60 ± 5 olduğu takdirde, öğrencilerin

  • %68’nin puanı 55 – 65 arası (M ± 1s)

  • %95’nin 50 – 70 arası (M ± 2s)

  • % 99’nun 45 – 75 arası (M ± 3s) olacak


%68

-3s -2s -1s M +1s +2s +3s


Etki boyutu kavram
Etki boyutu kavramı

İstatistikte uygulanan etki boyutu hesaplanması 2 değişkenin bağlantı gücünü ölçmektedir.

BU yöntem betimsel çalışmalarda kullanmaktadır.

Örneğin, uygulanan zayıflama programı ortalama 10 kg kilo azalmasını sağlamaktadır tespiti, 10 kg etki boyutun göstergesidir.

Fakat burada herbir kişinin 10 kg zayıfladığı veya yarısının 20 kg, o biri yarısını hiç zayıflamadığı düşünülebilir. Cevap hesaplanma sonucu tespit edilmektedir.


Etki boyutu effect size
Etki boyutu (effect size)

  • Saptanmış ortalamalar arasındaki standartize farklılığı (farkın anlamlı olduğunu) tespit eder.

  • ES = (M1 – M2)/s

    M1-bir grup veri ortalaması

    M2 –diğer grup veri ortalaması

    s-standart sapma

    ES ≥ 0,8 farkın büyük ölçüde ANLAMLI olması, ES 0,5 civarında olduğunda farkın KISMEN ANLAM taşıdığını ve ES ≤ 0,2 olması farkın büyük ölçüde anlam taşımadığına işaret etmektedir


Etki boyutu effect size1
Etki boyutu (effect size)

  • Örnek: Gr. 1 Gr.2

  • Ort. koşu mesafesi M1=3km M2=2,5km

  • Standart sapma s1=0,114km s2=0,103km

  • Katılımcı sayısı n1=15 n2=15

    s = [ s12(n1 – 1) + s22 (n2 – 1)] / (n1 + n2 – 2) =109

    ES= (3000 – 2500)/109 = 4,6, yani ES≥0,8


Olasilik probab l te
OLASILIK (PROBABİLİTE)

  • p olarak simgelenmektedir

  • 0.05 (%5) veya 0.01 (%1) olabilir

  • α – alfa – araştırmalarda kabul olabilecek şans olasılığı (genelde %5 veya %1’dir)

  • Tip I yanlışlığın kontrolü için kullanılır

  • β – beta – Tip 2 yanlışlığın kontrolü içindir



Statistik t test

İstatistik: T-test PREZENTASYONU

Araştırma esnasında elde edilen verilerin arasındaki FARKIN olup olmadığını inceler


Tan t m
Tanıtım PREZENTASYONU

  • T-test, 2 veri grubun ortalama (mean) değerlerin istatistiksel farklı olup olmadığını incelemektedir


Statistiksel fark kavram n izahat
“İstatistiksel fark” kavramın izahatı PREZENTASYONU

  • Her 3 durumda ortalamalar arasındaki fark aynidir

  • Orta seviyeli değişkenlik

  • Yüksek seviyeli değişkenlik

  • Düşük seviyeli değişkenlik

  • Yeşil ve mavi grupların farklı olduğu net olarak sadece alttaki grafikte gözlemlenir – aralarındaki örtüşme alanı minimaldır.

  • Örtüşme payının %5 altında olması durumunda ortalama değerlerin istatistiksel farklı olduğu söylenilebilir.



Rneklem toplum t test hesaplanmas
Örneklem – toplum t-test hesaplanması PREZENTASYONU

  • t = (M - µ)/(sM/√n),

    M - örneklem ortalaması

    µ - toplum ortalaması

    sM - örneklem st.sapm,

    n – örneklem boyutu

    t = (81 – 76)/(9/√32) = 3,14




Ba ml t test hesaplanmas
Bağımlı t-test hesaplanması PREZENTASYONU

ΣD

  • t =

    [NΣD2 – (ΣD)2] / (N-1)

    D – test sonrasıyle test öncesi alınmış sonuçların farkı

    N – katılımcı sayısı



Z skoru
Z - SKORU PREZENTASYONU


Z skoru hesaplanmas
z skoru hesaplanması PREZENTASYONU

z = (X – M) / s

X - söz konusu performans ölçümü sonucu olan veri

M - takımın önceden hesaplanmış ortalaması

s - takımın önceden hesaplanmış standart sapması


Z skoru hesaplanmas rnek
z skoru hesaplanması: örnek PREZENTASYONU

  • Örn.: gruptaki performans verilerine göre dikey sıçrama ortalaması 40cm ve st.sapması 6cm’iken, push-up testi için bu rakamlar 20 ve 5 çıkmıştır.

  • Boylece 46cm’lik bir dikey sıçramanın z-skoru =

  • Z = (46 – 40) / 6 =1,00

  • Push-up için ise Z = (25 – 20) / 5 = 1,00


Korelasyon
KORELASYON PREZENTASYONU

Tanıtım: 2 veya daha fazla grup veri arasındaki bağlantının olup olmadığını test eden (değerlendiren) istatistik tekniğine korelasyon hesaplanması denir.

Örn.: yaşın artışıyla vücut artışı arasındaki korelasyon test edilebilir.

veya haftalık çalışma saat miktarıyla sınavdaki başarı puanı arasındaki korelasyona bakılabilir.


Korelasyon1
KORELASYON PREZENTASYONU

Korelasyonun (yani bağlantının) var olması, bir veri değişimiyle diğer verinin değişimi anlamına gelmektedir.

Fakat, bu her defasında bir veri değişimin o birinin değişim sebebi olduğunun anlamına gelmez. Bu durumda her iki veri değişimi bir başka nedenle değiştiğinin göstergesidir. 


Korelasyon2
KORELASYON PREZENTASYONU

  • Örn.: Yaşlılarda yaşın artışıyla kişilerin düşme riski artmaktadır. Bu örnekte düşme riski verisi yaşın artışı verisine bağlı olsa da, onun nedeni yaştan ziyade kas oranın azalmasıdır.

  • Korelasyon hesaplanması:

    Korelasyonun niceliksel değeri korelasyon katsayısıdır, r olarak belirlenir, 0 – 1 arası değişebilir.

    Eksi veya artı rakam şeklinde olabilir.


ad