1 / 34

Back to silicate structures:

Back to silicate structures:. nesosilicates. phyllosilicates. sorosilicates. inosilicates. cyclosilictaes. tectosilicates. b. c. Nesosilicates: independent SiO 4 tetrahedra. projection. Olivine (100) view blue = M1 yellow = M2. (+). T M1 T

velda
Download Presentation

Back to silicate structures:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Back to silicate structures: nesosilicates phyllosilicates sorosilicates inosilicates cyclosilictaes tectosilicates

  2. b c Nesosilicates: independent SiO4 tetrahedra projection Olivine (100) view blue = M1 yellow = M2

  3. (+) T M1 T Creates an “I-beam” like unit in the structure Inosilicates: single chains- pyroxenes

  4. (+) (+) (+) (+) (+) Inosilicates: single chains- pyroxenes The pyroxene structure is then composed of alternating I-beams Clinopyroxenes have all I-beams oriented the same: all are (+) in this orientation Note that M1 sites are smaller than M2 sites, since they are at the apices of the tetrahedral chains

  5. (+) (+) (+) (+) (+) Inosilicates: single chains- pyroxenes The pyroxene structure is then composed of alternation I-beams Clinopyroxenes have all I-beams oriented the same: all are (+) in this orientation

  6. (-) (+) (+) (-) (-) Inosilicates: single chains- pyroxenes The pyroxene structure is then composed of alternation I-beams Orthoopyroxenes have I-beams oriented in alternate direction in different layers

  7. Inosilicates: single chains- pyroxenes The tetrahedral chain above the M1s is thus offset from that below The M2 slabs have a similar effect The result is a monoclinic unit cell, hence clinopyroxenes (+) M2 c a (+) M1 (+) M2

  8. Inosilicates: single chains- pyroxenes Orthopyroxenes have alternating (+) and (-) I-beams the offsets thus compensate and result in an orthorhombic unit cell c (-) M1 (+) M2 a (+) M1 (-) M2

  9. Pyroxene Chemistry The general pyroxene formula: W1-P (X,Y)1+P Z2O6 Where • W = Ca Na • X = Mg Fe2+ Mn Ni Li • Y = Al Fe3+ Cr Ti • Z = Si Al Anhydrous so high-temperature or dry conditions favor pyroxenes over amphiboles

  10. Pyroxene Chemistry The pyroxene quadrilateral and opx-cpx solvus Coexisting opx + cpx in many rocks (pigeonite only in volcanics) Wollastonite Ca2Si2O6 • Orthopyroxenes – solid soln between Enstatite-Ferrosilite • Clinopyroxenes – solid soln between Diopside-Hedenbergite Hedenbergite CaFeSi2O6 Diopside CaMgSi2O6 clinopyroxenes Joins – lines between end members – limited mixing away from join pigeonite orthopyroxenes Ferrosilite Fe2Si2O6 Enstatite Mg2Si2O6

  11. Wollastonite Ca2Si2O6 Hedenbergite CaFeSi2O6 Diopside CaMgSi2O6 clinopyroxenes pigeonite orthopyroxenes Ferrosilite Fe2Si2O6 Enstatite Mg2Si2O6 Orthopyroxene - Clinopyroxene OPX and CPX have different crystal structures – results in a complex solvus between them Coexisting opx + cpx in many rocks (pigeonite only in volcanics) pigeonite 1200oC orthopyroxenes clinopyroxenes 1000oC CPX Solvus 800oC (Mg,Fe)2Si2O6 Ca(Mg,Fe)Si2O6 OPX OPX CPX

  12. Orthopyroxene – Clinopyroxenesolvus T dependence • Complex solvus – the ‘stability’ of a particular mineral changes with T. A different mineral’s ‘stability’ may change with T differently… • OPX-CPX exsolution lamellae  Geothermometer… CPX CPX Hd Di Di Hd augite augite Subcalcic augite Miscibility Gap Miscibility Gap pigeonite pigeonite orthopyroxene orthopyroxene Fs En Fs En OPX OPX 800ºC 1200ºC Pigeonite + orthopyroxene

  13. Pyroxene Chemistry Jadeite Aegirine NaAlSi2O6 “Non-quad” pyroxenes NaFe3+Si2O6 0.8 Omphacite aegirine- augite Spodumene: LiAlSi2O6 Ca / (Ca + Na) Ca-Tschermack’s molecule 0.2 CaAl2SiO6 Augite Diopside-Hedenbergite Ca(Mg,Fe)Si2O6

  14. 17.4 A 12.5 A 7.1 A 5.2 A Pyroxenoids “Ideal” pyroxene chains with 5.2 A repeat (2 tetrahedra) become distorted as other cations occupy VI sites Pyroxene 2-tet repeat Wollastonite (Ca  M1)  3-tet repeat Rhodonite MnSiO3  5-tet repeat Pyroxmangite (Mn, Fe)SiO3  7-tet repeat

  15. Back to silicate structures: nesosilicates phyllosilicates sorosilicates inosilicates cyclosilictaes tectosilicates

  16. b Tremolite: Ca2Mg5 [Si8O22] (OH)2 a sin Inosilicates: double chains- amphiboles Tremolite (001) view blue = Si purple = M1 rose = M2 gray = M3 (all Mg) yellow = M4 (Ca)

  17. b Hornblende: (Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2 a sin Inosilicates: double chains- amphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na) little turquoise ball = H

  18. Hornblende: (Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2 Same I-beam architecture, but the I-beams are fatter (double chains) Inosilicates: double chains- amphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe)

  19. (+) (+) (+) (+) (+) b Hornblende: (Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2 Same I-beam architecture, but the I-beams are fatter (double chains) a sin Inosilicates: double chains- amphiboles All are (+) on clinoamphiboles and alternate in orthoamphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na) little turquoise ball = H

  20. Hornblende: (Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2 M1-M3 are small sites M4 is larger (Ca) A-site is really big Variety of sites  great chemical range Inosilicates: double chains- amphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na) little turquoise ball = H

  21. Hornblende: (Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2 (OH) is in center of tetrahedral ring where O is a part of M1 and M3 octahedra Inosilicates: double chains- amphiboles (OH) Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na) little turquoise ball = H

  22. Amphibole Chemistry • See handout for more information • General formula: • W0-1 X2 Y5 [Z8O22] (OH, F, Cl)2 • W = Na K • X = Ca Na Mg Fe2+ (Mn Li) • Y = Mg Fe2+ Mn Al Fe3+ Ti • Z = Si Al • Again, the great variety of sites and sizes  a great chemical range, and hence a broad stability range • The hydrous nature implies an upper temperature stability limit

  23. Amphibole Chemistry Ca-Mg-Fe Amphibole “quadrilateral” (good analogy with pyroxenes) Tremolite Ferroactinolite Actinolite Ca2Mg5Si8O22(OH)2 Ca2Fe5Si8O22(OH)2 Clinoamphiboles Cummingtonite-grunerite Anthophyllite Fe7Si8O22(OH)2 Mg7Si8O22(OH)2 Orthoamphiboles Al and Na tend to stabilize the orthorhombic form in low-Ca amphiboles, so anthophyllite  gedrite orthorhombic series extends to Fe-rich gedrite in more Na-Al-rich compositions

  24. Amphibole Chemistry • Hornblende has Al in the tetrahedral site • Geologists traditionally use the term “hornblende” as a catch-all term for practically any dark amphibole. Now the common use of the microprobe has petrologists casting “hornblende” into end-member compositions and naming amphiboles after a well-represented end-member. • Sodic amphiboles • Glaucophane: Na2 Mg3 Al2 [Si8O22] (OH)2 • Riebeckite: Na2 Fe2+3 Fe3+2 [Si8O22] (OH)2 • Sodic amphiboles are commonly blue, and often called “blue amphiboles”

  25. Amphibole Occurrences Tremolite (Ca-Mg) occurs in meta-carbonates Actinolite occurs in low-grade metamorphosed basic igneous rocks Orthoamphiboles and cummingtonite-grunerite (all Ca-free, Mg-Fe-rich amphiboles) are metamorphic and occur in meta-ultrabasic rocks and some meta-sediments. The Fe-rich grunerite occurs in meta-ironstones The complex solid solution called hornblende occurs in a broad variety of both igneous and metamorphic rocks Sodic amphiboles are predominantly metamorphic where they are characteristic of high P/T subduction-zone metamorphism (commonly called “blueschist” in reference to the predominant blue sodic amphiboles Riebeckite occurs commonly in sodic granitoid rocks

  26. Inosilicates + + + + + + + a + + + + + + + + + + + - - - - - - Clinopyroxene Clinoamphibole + + + + + a + - - - - - - Orthopyroxene Orthoamphibole • Pyroxenes and amphiboles are very similar: • Both have chains of SiO4 tetrahedra • The chains are connected into stylized I-beams by M octahedra • High-Ca monoclinic forms have all the T-O-T offsets in the same direction • Low-Ca orthorhombic forms have alternating (+) and (-) offsets

  27. pyroxene amphibole Inosilicates b a Cleavage angles can be interpreted in terms of weak bonds in M2 sites (around I-beams instead of through them) Narrow single-chain I-beams  90o cleavages in pyroxenes while wider double-chain I-beams  60-120o cleavages in amphiboles

  28. Tectosilicates After Swamy and Saxena (1994)J. Geophys. Res., 99, 11,787-11,794.

  29. Tectosilicates Low Quartz 001 Projection Crystal Class 32

  30. Tectosilicates High Quartz at 581oC 001 Projection Crystal Class 622

  31. Tectosilicates Cristobalite 001 Projection Cubic Structure

  32. Tectosilicates Stishovite High pressure  SiVI

  33. Tectosilicates Low Quartz Stishovite SiIVSiVI

  34. Igneous Minerals • Quartz, Feldspars (plagioclase and alkaline), Olivines, Pyroxenes, Amphiboles • Accessory Minerals – mostly in small quantities or in ‘special’ rocks • Magnetite (Fe3O4) • Ilmenite (FeTiO3) • Apatite (Ca5(PO4)3(OH,F,Cl) • Zircon (ZrSiO4) • Titanite (CaTiSiO5) • Pyrite (FeS2) • Fluorite (CaF2)

More Related