All images credit:   NASA / JPL / Brown University
This presentation is the property of its rightful owner.
Sponsored Links
1 / 31

Evdokimova N., Korablev O., Marchenkov K., Rodin A ., Malova H., Podzolko M., Zelenyi L. Space Research Institute(IKI), Moscow, Russia PowerPoint PPT Presentation


  • 40 Views
  • Uploaded on
  • Presentation posted in: General

All images credit: NASA / JPL / Brown University. Evdokimova N., Korablev O., Marchenkov K., Rodin A ., Malova H., Podzolko M., Zelenyi L. Space Research Institute(IKI), Moscow, Russia. Jupiter system. Jupiter has ~50 satellites!.

Download Presentation

Evdokimova N., Korablev O., Marchenkov K., Rodin A ., Malova H., Podzolko M., Zelenyi L. Space Research Institute(IKI), Moscow, Russia

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

All images credit: NASA / JPL / Brown University

Evdokimova N., Korablev O., Marchenkov K., Rodin A., Malova H., Podzolko M., ZelenyiL.

Space Research Institute(IKI), Moscow, Russia


Jupiter system

Jupiter system

Jupiter has ~50 satellites!

1. Io 2. Europa3. Ganymede 4. Callisto 5. Amalthea6. Himalia7. Elara8. Pasiphae 9. Sinope10. Lysithea11. Carme12. Ananke13. Leda 14. Thebe 15. Adrastea16. Metis17. Callirrhoe18. Themisto19. Megaclite20. Taygete21. Chaldene22. Harpalyke23. Kalyke24. Iocaste25. Erinome

26. Isonoe27. Praxidike28. Autonoe29. Thyone30. Hermippe31. Aitne32. Eurydome33. Euanthe34. Euporie35. Orthosie36. Sponde37. Kale 38. Pasithee39. Hegemone40. Mneme41. Aoede42. Thelxinoe43. Arche44. Kallichore45. Helike46. Carpo47. Eukelade48. Cyllene49. Kore50. Herse

Ио

Каллисто

http://physics.fortlewis.edu/Astronomy


Galilean satellites of jupiter

Galilean Satellites of Jupiter

Four Galilean satellites – since 1610

Jupiter has ~50 satellites!

MGS view. Image credit: NASA / JPL

Ио

1:2:4 Laplace resonance

Io

Europa

http://physics.fortlewis.edu/Astronomy

Ganymede

Callisto

http://physics.fortlewis.edu/Astronomy


Activity of galilean satellites

Activity of Galilean satellites

Io

Europa

Ganymede

Callisto

Magmatism

Tectonism

Impact cratering

Adapted from Bagenal et al., 2004

Tidal Energy

Distance from Jupiter. Proportions are not kept


Ganymede general information

Ganymede: General information

  • Diameter:

    D(Gan) = 5262,4 km ~ 1.5D(Moon) ~ 1.08D(Mercury)

    - the largest (not the heaviest!) satellite of Solar System;

  • Mass:

    M(Gan) ~1.48*1023 kg ~ 2M(Moon)

  • Density:

    ρ (Gan) ~ 1800-1900 kg/m3

  • Orbital parameters:

    Orbital period: T(Gan) = 7.1546 T(Earth) ~ 7.1546 days

    Semi-major axis: a = 1 070 412 km

    Eccentricity: e = 0.0011 (range: 0.0009 ÷ 0.0022)

    Inclination: i=0,204° (range: 0,05° ÷ 0.32°)

Image credit: NASA / JPL

Image credit: NASA / JPL


Breakthrough missions having explored ganymede

Breakthrough missions having explored Ganymede

1977 – launch Voyager -1 and -2

1989-2003 – Galileo mission.

1996-1997 – the best observation of Ganymde

2006 – launch New Horizons. Now it is going to Pluto.

2007 - Ganymede flyby


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

Galileo mission (1989-2003)

Image credit: NASA / JPL

Date: 3 Aug 1989

Image credit: NASA / JPL

Date: 18 Oct 1989


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

Galileo mission (1989-2003)

Image credit: NASA / JPL

Date: 3 Aug 1989

Image credit: NASA / JPL

Date: 18 Oct 1989


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

Galileo mission (1989-2003)

  • Spacecraft instruments:

  • Solid State Imaging Camera (SSI)

  • Near Infrared Mapping Spectrometer (NIMS)

  • Photopolarimeter-Radiometer (PPR)

  • UltraViolet Spectrometer (UVS)

  • Magnetometer

  • Energetic particles detector

  • Plasma wave spectrometer

  • Dust detector

  • Heavy ion counter

  • Atmospheric probe:

  • Helium abundance detector

  • Atmospheric structure instrument

  • Neutral mass spectrometer

  • Nephelometer

  • Net flux radiometer

  • Lightning and radio emission detector

Galileo’s look at Ganymede (1996-1997)

the highest spatial resolution ( ~12 m/px);

the closest flyby ( ~264 km to surface)


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

Ganymede: previous results

Measurement types

Problem

  • Internal structure

  • Geology, surface morphology

  • Atmosphere, exosphere

  • Magnetosphere

Gravity field measurements (Galileo)

Surface features analysis(from images: Voyager, Galileo), mineral composition (from spectroscopy, Earth-based radar)

UV spectroscopic measurments, Voyager-1, HST, Galileo

Magnetic field measurements, energetic particles(Galileo), aurorae(HST)


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

1. Internal structure

Strongly differentiated internal structure:

1) Liquid core : Fe, (+FeS?), R~400-1300 km

2) Rock mantle(silicates, Mg-rich?)

3) Ice mantle (liquid-solid: high-pressure phase), 800-950 km

4) Ice crust (130-150km) (more lighter)

Ice phase state and lattice type are unknown…

1

2

3

4

rocks ~60%, ices~40% (if ρ~1,94 g/cm – Pioneer, Voyager)

Ice near its melting becomes a low-viscosity solid =>

=> Ice mantle convection like Earth rock mantle?


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

1. Internal structure

Crust deformations: tides

Callisto tidal flexing < Ganymede tidal flexing < Europe tidal flexing

Tides from interior model of Ganymede:

In the presence of a liquid ocean: tide can exceed 7 m peak-to-peak variation

Without an ocean: tidal amplitudes are less than 0.5 m

(Moore, 2003)

Mass anomalies

2 surface mass anomalies?

one a positive mass at high latitude and the other - a negative mass at low latitude.

No obvious geological features that can be identified with the anomalies. (Galileo data, Anderson 2004)


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

1. Internal structure

Open questions

Possible solutions and related payload

  • Interiors structure

  • Existence of liquid mantle

  • Origins of mass anomalies

  • Ice structure and form

  • Role of tidal heating at present

  • and in the past

  • Etc…

-Seismometer

-Thermal mapping

-Gravity field mesurements

-Librations measurements (e.g. by stellar sensor)

-Etc?…


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

2. Geology, surface morphology

  • Numerous traces of active geological processes in early history:

  • tectonism, volcanism (caldera-like features- Spaun,2001;

  • cryovolcanism–Schenk, 2001), etc…

  • Numerous impact craters

    • 2 different types of surface:

1 - Dark terrain ~ 1/3 of Ganymede

The oldest (~4Gy); heavily cratered; palimpsets;

Callisto-like

Galileo, 140m/px

2 - Bright terrain(2) ~ 2/3 of Ganymede

The youngest; less cratered; lanes through dark terrain

*both types may be reticulate


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

2. Geology, surface morphology

  • Numerous traces of active geological processes in early history:

  • tectonism, volcanism (caldera-like features- Spaun,2001;

  • cryovolcanism–Schenk, 2001), etc…

  • Numerous impact craters

    • 2 different types of surface:

DEM of topography (same scene)

Galileo, 140m/px

*both types may be reticulate

Schenk, 2001


Global map based only on low resolution images

Global map based only on low resolution images

2. Geology, surface morphology

Galileo/Voyadger data


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

Morphology map based on Galileo mosaic

Geological units

Prockter, 1998

Prockter, 1998


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

2. Geology, surface morphology

  • Surficalrocks chemical composition

  • (telescopic observations; Galileo/NIMS spectroscopic data: T.McCord, 1998, etc)

  • - mainly H2O ice (50-90%)

  • presence of CO2 ice (Hibbits, 2003)

  • signs of SO2 , NH3

  • - hydrated minerals (MgSO4·nH2O, Na2Mg(SO4)2·4H2O , ...?

  • - still under studies

  • - unknown spectral features

  • *adsorb. bands 3.7, 3.88, 4.05, 4.25 µm, etc

  • - unknownmateral:

  • *darker and redder then water ice:

  • carbon-rich meteorite/mix of clays/organics component? tholin?

  • - still under studies…


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

2. Geology, surface morphology

  • Surficalrocks chemical composition

  • (telescopic observations; Galileo/NIMS spectroscopic data: T.McCord, 1998, etc)

  • - mainly H2O ice (50-90%)

  • presence of CO2 ice (Hibbits, 2003), O2

  • signs of SO2 , NH3

  • - hydrated minerals (MgSO4·nH2O, Na2Mg(SO4)2·4H2O , ...?

  • - still under studies

  • - unknown spectral features

  • *adsorb. bands 3.7, 3.88, 4.05, 4.25 µm, etc

  • - unknownmateral:

  • *darker and redder then water ice:

  • carbon-rich meteorite/mix of clays/organics component? tholin?

  • - still under studies…

NIMS/Galileo mapping

Carlson et al., 1996.


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

2. Geology, surface morphology

Surface temperature distribution (PPR/Galileo data)

Day side

Night side

Heat radiation ~ 60 µm

Tmin=80 K (observed)

Need for further studies of surficalthermophysical properties!


Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

2. Geology, surface morphology

Possible solutions and

related payload

Open questions

  • Searching for specific substances:

  • -non-organic components:

  • sulfates, hydrated minerals

  • -organics: tholin, etc;

  • Altimetry and geologic mapping;

  • Thermal inertia data;

  • (Water) ice microstructure;

  • Geological processes: current and past

  • Confirmation of cryovolcanism hypotheses

  • Age of “dark” and “light” terrains

  • Vertical structure of crust beneath dark terrain

  • …. etc

  • Elemental analysis:

  • -Laser-stimulated emission UV spectroscopy

  • -Laser-stimulated mass spectroscopy

  • Analysis of species:

  • -IR imaging spectroscopy

  • -GCMS

  • -Raman spectroscopy

  • -DLS spectroscopy

  • Mineralogical & morphological analysis:

    • -Multispectral camera

  • -IR imaging spectroscopy

    • -Microscope

    • …etc?


  • Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

    3. Atmosphere. Exosphere

    Ganymede does have atmosphere!

    • Very tenuous one: ~1016 cm-2

    • O, O2, H, H2, H2O, OH, … ?

    • sublimation and sputtering from icy surface ?

    • Frozen and trapped gases in the Ganymede surface?

    • -Micron-sized dust halo loosely bound by gravity – ice grains, the result of meteorite impacts


    Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

    3. Atmosphere. Exosphere

    Results of Dust detector/Galileo

    Kruger, 2000


    Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

    3. Atmosphere. Exosphere

    Possible solutions and

    related payload

    Open questions

    • Abundance of volatiles, isotopes

    • Sources/sinks,

    • interactions with the surface and interiors

    • Exosphere, escape mechanisms

    • Photochemistry

    • Interactions with Jovian magnetosphere

    • Thermal and non-thermal heating, kinetics,

    • dynamics (tides?)

    • Dust particles acceleration and escape

    Mass-spectrometry

    Radio occultations between the orbiter and lander

    Microwave sounding from the orbiter

    IR heterodyne sounding from the orbiter or lander


    Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

    4. Magnetosphere


    Ganymede s magnetic field internal induced magnetic fields

    M

    Ganymede’s magnetic field = internal +induced magnetic fields

    Magnetic moment

    M=1,3×1013 Т·м3~ three times greater than Mercury’s magnetic moment

    The origin of internal m.f. is the dynamo mechanism dueto convection of core forming liquid materials in Ganymede’s core

    (Fe- FeS )

    Hauck et al., JGR, 2006

    Ganymede’s magnetic field at equator ~ 720 nT

    Jupiter’s magnetic field ~120 nT

    Induced magnetic field ~ 60 nT

    Region of unstably trapped plasma particles; convection region.

    Kivelson et al., JGR, 1998

    Induced magnetic field is due to time varying

    component of the externally imposed Jupiter’s magnetic field. Source: electricalconductivity of aliquidwaterlayerbearingelectrolytessuchassaltsandacids.

    Kivelson et al., Icarus, 2002

    Ganymede is surrounded by a corona of hot oxygen atomes

    Eviator et al., PSS, 2001

    L~4-5 RG ~10000-13000 km


    Ganymede s interaction with the jupiterian magnetosphere

    Ganymede’s interaction with the Jupiterian magnetosphere

    4. Magnetosphere

    Ganymede’s magnetosphere

    From presentation by D.Titov


    Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

    Interaction with Jupiter’s magnetic field

    Open field lines are connected

    to Jupiter’s polar magnetic field.

    Field-aligned currents in Alfven wings ~ 1.2*106A

    Jia et al., JGR, 2009

    Z

    X

    Upstream

    Reconnection line

    Ionosphere

    Downstream

    reconnection line

    Asymmetrical

    Magnetopause

    Ultraviolet auroral brightness (Eviator et al., 2001)

    Regions of high-energy ions+electrons

    E~100 keV

    4. Magnetosphere

    Alfven wings

    Plasma flows.

    Magnetsopheric convection.

    No bow shock: velocity of magnetospheric flow is sub-sonic

    Kivelson et al., 2001

    Alfven wings


    Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

    Amalthea

    Amalthea

    Io

    Io

    Europa

    Europa

    Ganymede

    Ganymede

    Charged particle flux and radiation dose equatorial profiles at Jupiter

    Equatorial profiles of radiation doses under 0.27, 1, 2.2 and 5 g/cm2shielding, and separately dose under 2.2 g/cm2 from protons only near Jupiter.

    Equatorial profiles of the integral fluxes of E > 0.5, >2 and >10 MeV electrons and

    E> 2, >10 and >30 MeV protons at Jupiter.


    Open questions

    Open questions:

    4. Magnetosphere

    • Sources of internal and induced magnetic fields

    • Plasma convection and transfer in Ganymede’s magnetosphere

    • Structure of the ionospheric current system

    • Particle acceleration mechanisms

    • Dynamics of heavy ions in polar and equatorial regions; their rolein auroral brightness in Ganymede

    • Influence of Ganymede to Jupiter’s auroras


    Evdokimova n korablev o marchenkov k rodin a malova h podzolko m zelenyi l space research instituteiki m

    Conclusions

    • Ganymede is exceptionally challenging target

    • for Russian and international space exploration program

    • Lots of hot topics to remain hot for the next

    • 15(?) years

    • Strong, multidisciplinary community is

    • needed


  • Login