1 / 38

ON CLOSED BCH-ALGEBRA WITH RESPECT TO AN ELEMENT OF BCH-ALGEBRA

ON CLOSED BCH-ALGEBRA WITH RESPECT TO AN ELEMENT OF BCH-ALGEBRA. By Assist.prof. Hussein Hadi Abbass University of KufaCollege of Education for girls Department of Mathematics Msc_hussien@yahoo.com Hasan Mohammed Ali Saeed

sona
Download Presentation

ON CLOSED BCH-ALGEBRA WITH RESPECT TO AN ELEMENT OF BCH-ALGEBRA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ON CLOSED BCH-ALGEBRA WITH RESPECT TO AN ELEMENT OF BCH-ALGEBRA By Assist.prof. Hussein Hadi Abbass University of Kufa\College of Education for girls\ Department of Mathematics Msc_hussien@yahoo.com Hasan Mohammed Ali Saeed University of Kufa\ College of Mathematics and Computer Sciences \Department of Mathematics Has_moh2005@yahoo.com

  2. Historical Introduction

  3. أن أغلب الأجهزة الرقمية في أنظمة الاتصالات تقوم بنقل المعلومات على شكل ذبذبات مرمزة بشكل ثنائي أي ان المعلومة (message)تكون بصيغة 1,0لذلك سوف يكون موضوع الندوة حول الشفرات الثنائية وهذه الشفرات يمكن الحصول عليها من عناصر حقل غالوا وعلى سبيل المثال الذبذبة في المخطط ادناه يرمز لها بالرمز 10110

  4. ينشأ حقل غالوا بأخذ متعددة حدود غير قابلة للتحليل (بدائية) primitive ذات درجة n تنتمي الى حلقة متعددة الحدود فيتم انشاء حقل غالوا باستخدامها حيث أن اي ان تكون جذراً لـــ أن يحتوي على من العناصر وهو حقل توسيع للحقل ويعتبر هذا الحقل مولد لـ من الذبذبات (الشفرات الرقمية ) مــثال : أنشئ حقل غالوا باستخدام متعددة الحدود وبماأن اذن يمكن ايجاد عناصر غالوا من خلال التعويض عن كيفية تصميم دائرة تشفير مولد باستخدام حقل غالوا

  5. بـ 0,1 فيكون هناك من الأحتمالات التي تمثل عناصر حـــقل غالوا من وجهة نظر الرياضيات والذي يمثل مولد لشفرات رقمية ثنائية لمصممي الأجهزة الألكترونية عناصر حقل غالوا الشفرة الرقمية شكل الذبذبة أي أن هو مولد رسائل رقمية ثنائية

  6. الشكل الأتي يبين مولد شفرات رقمية shift regester الذي يمثل الحقل المولد بواسطة متعددة الحدود 0101 0011 1000 0001 1111 1011 0111 1101 1110 1100 0110 1010 0100 0010 1001

  7. الشفرات الفاحصة المتعادلة Parity check code 0010101010 التشويش خلال نقل المعلومات تكون معرضة للتشويش أي بمعنى اخر وجود اشارات دخيلةالتي ممكن أن تغير المعلومات المنقولة .لذلك ظهرت الحاجة الى مايسمىالشفرات الكاشفة والمصححة للأخطاء. التشويش بعد حين

  8. صورة مستلمة من احدى الاقمار الصناعية قبل تصحيحها

  9. وعلى سبيل المثال تقول وكالة ناسا للفضاء الأمريكية أنها أرسلت 1969 مركبتان فضائيتان (Mariners 6,7) وأن هاتان المركبتان أرسلتا أكثر من 200 صورة لكوكب المريخ كل صورة تحتاج الى ( (5 ملايين بت وأن معدل الأرسال هو 16200 بت في الثانية ترسل الى الأرض وأنها قد استخدمت الشفرات الكاشفة والمصححة للأخطاء

  10. الصورة التي تم عرضها سابقا(قبل التصحيح)( بعد التصحيح ) نعرض الصورة المشوشة التي تم عرضها سابقاً وتظهر الصورة الحقيقية على اليسار

  11. www.NASA.gov www.NASA.gov

  12. 1.PRELIMINARIES Definition ( 1.1 ) [5, 6] : A BCI-algebra is an algebra (X,*,0), where X is nonempty set, * is a binary operation and o is a constant , satisfying the following axioms: • for all x,y, z X: • ((x *y) * (x * z)) * (z * y) = 0, • (x * (x * y)) * y = 0, • x * x = 0, • x * y =0 and y * x = 0 imply x = y,

  13. Definition ( 1.2 ) [11] : • A BCK-algebra is a BCI-algebra satisfying the axiom: 0 * x = 0 for all x  X. Definition ( 1.3 ) [10] : A BCH-algebra is an algebra (X,*,0), where X is nonempty set, * is a binary operation and 0 is a constant , satisfying the following axioms: for all x,y, z X: x * x = 0, x * y =0 and y * x = 0 imply x = y, ( x * y ) * z = ( x * z ) * y

  14. Definition ( 1.4 ) [3, 11, 12] : In any BCH/BCI/BCK-algebra X, a partial order  is defined by putting xy if and only if x*y = 0. Proposition ( 1.5 ) [4, 8, 9] : In a BCH-algebra X, the following holds for all x, y, z  X, x * 0 = x , (x * (x * y)) * y = 0, 0 * (x * y) = (0 * x) * (0 * y) , 0 * (0 * (0 * x)) = 0 * x , x  y implies 0 * x = 0 * y.

  15. Definition ( 1.7 ) [2] : A BCH-algebra X that satisfying in condition if 0 * x = 0 then x = 0, for all xX is called a P-semisimple BCH-algebra. Definition ( 1.8 ) [7] : A BCH-algebra X is called medial if x * ( x * y ) = y , for all x , y  X. Definition ( 1.9 ) [2] : A BCH-algebra X is called an associative BCH-algebra if: ( x * y ) * z = x * ( y * z ) , for all x , y , z  X.

  16. TYPE OF BCH-ALGEBRA

  17. Definition ( 1.10 ) [9] : Let X be a BCH-algebra . Then the set X+ = { x  X : 0 * x = 0 } is called the BCA-part of X . Definition ( 1.12 ) [9] : Let X be a BCH-algebra . Then the set med(X) = {x  X : 0 * (0 * x) = x} is called the medial part of X .

  18. PART OF BCH-ALGEBRA

  19. Theorem ( 1.14 ) [7] : Let X be a BCH-algebra . Then x  med(X) if and only if x*y = 0*(y*x) for all x,yX. Definition ( 1.15 ) [9] : Let S be a subset of a BCH-algebra X. S is called a subalgebra of X if x*y  S for every x,yS.

  20. Definition ( 1.16 ) [2, 7]: Let I be a nonempty subset of a BCH-algebra X. Then I is called an ideal of X if it satisfies: (i) 0I (ii) x*yI and y I imply xI. Definition ( 1.17) [7] : An ideal I of a BCH-algebra X is called a closed ideal of X if 0*xI for all xI.

  21. Definition ( 1.18 ) [7] : An ideal I of a BCH-algebra X is called a quasi-associative ideal if 0*(0*x)=0*x, for each x  I. Definition ( 1.19 ) [1 ] : Let I be an ideal of X. Then I is called a fantastic ideal of X if (x*y)*zI and zI, then x*(y*(y*x))I, for all x, y, zX.

  22. Definition ( 1.19 ) [1 ] : Let I be an ideal of X. Then I is called a fantastic ideal of X if (x*y)*zI and zI, then x*(y*(y*x))I, for all x, y, zX. Proposition ( 1.20 ) [1] : If X is an associative BCI-algebra, then every ideal is a fantastic ideal of X.

  23. 2.THE MAIN RESULTS Definition ( 2.1 ): Let X be a BCH-algebra and I be an ideal of X . Then I is called a closed ideal with respect to an element aX (denoted a-closed ideal) if a * ( 0 * x )  I , for all x  I. Remark ( 2.2 ): In a BCH-algebra X , the ideal I = {0} is the closed ideal with respect to 0 . Also , the ideal I = X is the closed ideal with respect to all elements of X.

  24. Example ( 2.3 ): Let X = {0 ,a ,b ,c }. The following table shows the BCH-algebra on X .

  25. Then I={0,a} is closed ideal with respect to( 0 and a) ,Since 0  I , If x*yI ,and yI implies xI So I is ideal. 0*(0*0) = 0  I and 0*(0*a) = a I I is 0-closed ideal. Also a*(0*0)=a I and a*(0*a) = 0 I I is a-closed ideal.

  26. Definition ( 2.4 ): Let X be a BCH-algebra and aX. Then X is called closed BCH-algebra with respect to a, or a-closed BCH-algebra, if and only if every proper ideal is closed ideal with respect to a. Example ( 2.5 ): Let X={0, 1, 2, 3, 4, 5}. The following table shows the BCH-algebra structure on X.

  27. I1={0, 1} , I2={0, 1, 2} and I3={0, 1, 2, 3} are all the proper ideals [since if x*yIi and yIi xIi , i=1, 2, 3 ] . I1 is closed ideal with respect to 1 [since 1*(0*x)I1 ,x I1 ] I2 is closed ideal with respect to 1 [since 1*(0*x)I2 ,x I2 ] I3 is closed ideal with respect to 1 [since 1*(0*x)I3 ,x I3 ] Therefore, X is 1-closed BCH-algebra. But X is not 2-closed BCH-algebra, since I1 is not 2-closed ideal[Since(2*(0*1))=2I1

  28. Theorem(2.6) : Let X is a BCH-algebra . If X=X+ (where X+ is a BCA-part), then X is 0-closed BCH-algebra . Corollary(2.7) : Every BCK-algebra is 0-closed BCH-algebra.

  29. Theorem(2.8) : Let X be a 0-closed BCH-algebra. Then every quasi-associative ideal is closed ideal. Theorem(2.9) : Let X be a 0-closed BCH-algebra. Then every quasi-associative ideal is subalgebra.

  30. In 0-closed BCH-algebra

  31. proposition(2.10) : • Let X be an a-closed BCI-algebra, with aX. If X is an associative BCI-algebra, then every a-closed ideal is a fantastic ideal of X .

  32. شكراً لإصغائكم

More Related