1 / 27

The Backreaction Conjecture to explain Dark Energy

The Backreaction Conjecture to explain Dark Energy. Thomas Buchert , CRALyon. MPIK May 26, 2014. The Standard Model . G  =  T . t. 2. a ( t ) δij. ?. The Standard Model works !. Baryons ~ 5%. Dark Matter ~ 27%. Dark Energy ~ 68 %. Radiation ~ 0.01%.

shubha
Download Presentation

The Backreaction Conjecture to explain Dark Energy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Backreaction Conjecture to explain Dark Energy Thomas Buchert, CRALyon MPIK May 26, 2014

  2. The Standard Model G= T t 2 a(t) δij ?

  3. The Standard Model works ! Baryons ~ 5% Dark Matter ~ 27% Dark Energy ~ 68 % Radiation ~ 0.01% Astier et al. 2006

  4. The Standard Model does not work ! Baryons ~ 5% fundamental scalar field / new particles ? Dark Matter ~ 27% other laws of gravitation ? effect of geometrical inhomogeneities? Dark Energy ~ 68 % Radiation ~ 0.01% backreaction conjecture

  5. Acceleration in the Standard Model localacceleration ⅓ a(t) =V (t) global acceleration apparentacceleration t 2 a(t) δij Λ

  6. Generalizing the Standard Model 1/3 aD= VR 4g = - dt2 + gij dXi dXj a(t) Einstein Spacetime t gij t

  7. Averaging Einstein’s Equations Spatial Average on a compact domain : Restmass conservation on the domain D

  8. Non - Commutativity

  9. Kinematical Backreaction • AccelerationLaw : • Expansion Law : • ConservationLaw : • Integrability :

  10. Effective Friedmann Equations • EffectiveScalarField :`Morphon´ Buchert, Larena, Alimi arXiv: gr-qc / 0606020

  11. G=  T m+  Pm+ P = m+  Pm+ P =

  12. Volume Partitioning

  13. Volume Partitioning D M

  14. Volume Partitioning E D M υ = D M

  15. Structure formation and Dark Energy Roukema, Ostrowski, Buchert arXiv: 1303.4444

  16. Acceleration in the Multiscale Model Q D

  17. Acceleration in the Multiscale Model Wiegand, Buchert arXiv: 1002.3912

  18. Integral Properties of Relativistic Models • Averageisnon-friedmannian : • genericscalingsolutions : n = p • relativisticperturbationtheory : n = p = -1 • Averageisfriedmannianfor : • Locallyisotropicmodels (homogeneous) • Special LTB modelswithhomogeneouscurvature

  19. Global Gravitational Instability Averaged Cosmologies Near FRW Cosmologies: Q small Unstable Sectors : Q < 0 and <R> > 0 Q > 0 and <R> < 0 Buchert, Larena, AlimiarXiv: gr-qc / 0606020 Roy, Buchert, Carloni, ObadiaarXiv: 1103.1146

  20. Phase Space for  = 0

  21. Unstable Sectors  = 0 DM DE

  22. Dark Energy Sector  = 0 Q > 0 and <R> < 0 2 1/aD 1 1/aD 0 1/aD

  23. Volume-dominance of Voids QD ≈ 0 <> ≈0 : <R>D - 2  ≈– 6 HD2

  24. Sloan Digital Sky Survey - slices • 150000 galaxies E uclide a n Todai, Tokyo

  25. Observational Strategies C Template Metrics log(1+z) Larena, Alimi, Buchert, Kunz, CorasanitiarXiv: 0808.1161 Euclid

  26. Conclusions • structureformationchangesthegeometry of • theaveragecosmology • Dark Energy and Dark Matter exist in terms of • “curvatureenergies“ • qualitative understanding of themechanism • iscompleted and itworks in the right direction • quantitative understanding in terms of • non-perturbativemodelsis in progress • reinterpretation of observations !

  27. Further Reading : arXiv: gr-qc/0001056 0707.2153 1103.2016 1112.5335

More Related