1 / 49

Dark Energy

Dark Energy . L. News on CMB and Structure Formation. f. L. Dark Energy Evidence . f. L. Dark Energy Evidence . f. Spergel et al. 2003. WMAP+ACBAR+CBI+2dF+L . L. Cosmological Constant Problem . G  n = 8 p T mn. f. L. Cosmological Constant Problem . Geometry .

nituna
Download Presentation

Dark Energy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dark Energy L News on CMB and Structure Formation f

  2. L Dark Energy Evidence f

  3. L Dark Energy Evidence f Spergel et al. 2003 WMAP+ACBAR+CBI+2dF+L

  4. L Cosmological Constant Problem Gn=8pTmn f

  5. L Cosmological Constant Problem Geometry Gmn+gmn=8pTmn+Vgmn f Quantum Vacuum

  6. L Cosmological Constant Problem : ? |-V|/M2Planck.10-123 f 2 V: ? M Planck

  7. L Cosmological Constant Problem : ? percent accuracy |-V|/M2Planck=10-123 f 2 V: ? M Planck

  8. ?? L for Physics Two ? Why so small with respect to any particle physics scale ? Why comparable to the cosmological critical density today f

  9. L Dark Energy Models • Trans-Planckian: energy stored in perturbations with wavenumber beyond the Planck scale (Mersini et al. 2001) • Spacetime microstructure: self-adjusting spacetime capable to absorbe vacuum energy (Padmanabhan, 2002) • Matter-Energy Transition: dark matter undergoes a phase transition to dark energy at low redshifts (Basset et al. 2003) • Brane worlds: brane tension (Shani & Sthanov 2002); cyclic-ekpyrotic cosmic vacuum (Steinhardt &Tutok 2001) • Exotic particle physics: photons oscillating in something else at cosmological distances (Csaki et al. 2002) • Chaplygin gas: dark matter and energy described by a single gas having variable equation of state (Den et al. 2003, Carturan & Finelli 2003) • Scale-dependent Gravity: Gravity weaker on large scales (Dvali et al. 2003) • Quintessence: tracking scalar fields (Ratra & Peebles, Wetterich 1988, Coble et al. 1997, Ferreira & Joyce 1998, Liddle & Scherrer 1999, Steinhardt et al. 1999, Perrotta & Baccigalupi 1999, Brax & Martin 2000, Masiero et al. 2001, Doran et al. 2001, Corasaniti & Copeland 2003, ) • Extended Quintessence: non-minimal coupling to Gravity (Chiba, Uzan 1999, Perrotta et al. 2000, Baccigalupi et al. 2000, Faraoni 2000, Bartolo & Pietroni 2000, Esposito-Farese & Polarski 2001, Perrotta & Baccigalupi 2002) • Coupled Quintessence: coupling with dark matter (Carroll 1998, Amendola 2000, Matarrese et al. 2003) • k-essence: modified kinetic scalar field energy (Aramendariz-Picon et al. 2001, Caldwell 2002, Malquarti et al. 2003) f

  10. L Quintessence Field L!f(t)+f(t,x), U(f) f

  11. f vs. L L Background energy density: r=constant Background energy density: p=-constant Constant equation of state, w=p/r=-1 No fluctuations Background energy density: dynamical, ft2/2+U(f) f Background pressure: dynamical, ft2/2-U(f) Dynamical equation of state, w=p/r>-1 Fluctuations, df(t,x)

  12. L Quintessence Field L!f(t)+f(t,x), U(f) U(f)/fa (Ratra & Peebles 1988) U(f)/ exp f(Wetterich 1988) U(f)/ cos f(Coble et al. 1997) U(f)/fa exp(f2)(Brax & Martin 2000) … f

  13. w today L f WMAP+ACBAR+CBI+2dF+Ly w < -0.8 (2s ) Spergel et al. 2003

  14. L Effects on the CMB Power Spectrum • Projection • Integrated Sachs-Wolfe f

  15. L Dark Energy & CMB power spectrum • Balbi et al. 2001, Baccigalupi et al. 2002:evidence for w' –0.8, h fixed and W =1 • Efstathiou 2002: tensor degeneracy for cosmological parameters • Bean & Melchiorri 2002: degeneracy with h • Balbi et al. 2003: degeneracy with W f

  16. DEfast L A CMBfast plug-in for scalar field dark energy Features: Quintessence evolution in ordinary and scalar-tensor cosmology SUGRA and RP tracking trajectories Scalar field fluctuations User specifies WQ, w0, and the scenario to obtain the right trajectory f

  17. L Dark Energy & CMB power spectrum f

  18. Dark Energy & CMB: beyond Cl s L f Giovi et al. 2003, PRD in press, astro-ph/0308118

  19. CMB bispectrum L Q (W ) ´dT(W )/T alm=sQ (W )Ylm(W )dW Blm l`m`l``m``=alm al`m` al``m`` Bl l`l``=åm m` m`` (mlm`l`m``l``) alm al`m` al``m`` l f l`` l`

  20. CMB bispectrum & Structure Formation L < Blm l`m`l``m`` >=0 < Blm l`m`l``m`` >0 f

  21. CMB bispectrum & Structure Formation L Q (W ) =Qlss(W +dW)+QISW 'Qlss(W)+rQlss(W)¢dW QISW(W )=2s0decdr dY (r,W )/dh dW =2s0decdr[(r-rdec)/rdecr]Y(r,W) <Bl l`l``>=[(2l+1)(2l`+1)(2l``+1)/16p]1/2(0l0l`0``l``) ¢ ¢ [l(l+1)- l`(l`+1)+ l``(l``+1) ]Cl Q(l``) +Perm. D(z)=[r(zdec)-r(z)]/r(zdec)r(z)3 f Q(l)=s0dec D(z) F(z) dz F(z)=dPY/dz|k=l/r(z) PY=(3Wm0 /2)2(H0/ck)4P(k,z)(1+z)2 P(k,z)=AknT(k,z)2 Hu & White 1997, Bartelmann & Schneider 2001, Komatsu & Spergel 2001, Verde & Spergel 2002

  22. CMB bispectrum & Structure Formation L z r l =2p /k=r(z3)/l z3 r(z3) l =r(z2)/l z2 r(z2) l =r(z1)/l f z1 r(z1) l-1

  23. L CMB bispectrum line of sight chronology z r z!1 :super-horizon scales in a flat CDM universe, dPY/dh =0, dQ/dz! 0 horizon crossing, Y decaying linearly, dQ/dz>0 onset of acceleration, change in cosmic equation of state, Y decaying linearly, dQ/dz>0 Non-linearity, Y grows, dQ/dz<0 f z! 0, l vanishes, dQ/dz! 0 l-1

  24. CMB bispectrum line of sight distribution L f Giovi et al. 2003, PRD in press, astro-ph/0308118

  25. CMB bispectrum & Dark Energy L Quintessence reference models SUGRA RP f

  26. CMB bispectrum & Dark Energy L Ma et al. 1999, Smith et al. 2003 f Giovi et al. 2003, PRD in press, astro-ph/0308118

  27. CMB bispectrum & Dark Energy L f Giovi et al. 2003, PRD in press, astro-ph/0308118

  28. CMB bispectrum & Dark Energy L f Giovi et al. 2003, PRD in press, astro-ph/0308118

  29. CMB bispectrum & Dark Energy L f Giovi et al. 2003, PRD in press, astro-ph/0308118

  30. CMB bispectrum & Structure Formation < Blm l`m`l``m`` >=0 < Blm l`m`l``m`` >0 dW =2s0decdr[(r-rdec)/rdecr]Y(r,W) Giovi, Liguori et al. 2004, in preparation

  31. N-body in Dark Energy Cosmology Dolag et al. 2003, A&A submitted, see also Klypin et al. 2003, Linder & Jenkins 2003

  32. N-body in Dark Energy Cosmology GADGET (Springel et al. 2001) initial box: 5123 particles, side = 479h-1M , s8 today fixed to 0.9 Dark energy in background expansion, linear growth rate Haloes fitted with NFW Dolag et al. 2003, A&A submitted

  33. N-body in Dark Energy Cosmology L Quintessence reference models f Dolag et al. 2003, A&A submitted

  34. N-body in Dark Energy Cosmology dtt+2Hdt –4p Grd =0, D+(z)=d(z)/d0 Dolag et al. 2003, A&A submitted

  35. N-body in Dark Energy Cosmology L c(M,z)=c0 /(1+z)(M/1014h-1M)a f Dolag et al. 2003, A&A submitted

  36. N-body in Dark Energy Cosmology L is c0 dependent on the dark energy dynamics? can such dependence be predicted? f c(M,z)=[c0 /(1+z)](M/1014h-1M)a c0 ! c0L CDM¢ D+(zcoll) / D+L CDM(zcoll) Dolag et al. 2003, A&A submitted

  37. Dark Energy in Generalized Cosmologies L L=f(f ,R)/2-[w(f)/2]f;mf ;m-U(f )- -åk[y;m;m +V(yk)+W(f,yk)] G ,f ,y , ...

  38. Dark Energy in Generalized Cosmologies L Quintessence L=f(f ,R)/2-[w(f)/2]f;mf ;m-U(f )- -åk[y;m;m +V(yk)+W(f,yk)] G ,f ,y , ...

  39. Dark Energy in Generalized Cosmologies L Extended Quintessence L=f(f ,R)/2-[w(f)/2]f;mf ;m-U(f )- -åk[y;m;m +V(yk)+W(f,yk)] G ,f ,y , ...

  40. Dark Energy in Generalized Cosmologies L L=f(f ,R)/2-[w(f)/2]f;mf ;m-U(f )- -åk[y;m;m +V(yk)+W(f,yk)] Coupled Quintessence G ,f ,y , ...

  41. Dark Energy in Generalized Cosmologies L k-essence L=f(f ,R)/2-[w(f)/2]f;mf ;m-U(f )- -åk[y;m;m +V(yk)+W(f,yk)] G ,f ,y , ...

  42. Dark Energy in Generalized Cosmologies L New Gravity L=f(f ,R)/2-[w(f)/2]f;mf ;m-U(f )- -åk[y;m;m +V(yk)+W(f,yk)] G ,f ,y , ...

  43. Bravely facing the Coincidence Cosmic acceleration is a recent occurrence, say z of order unity … What happens at that epoch? funny physics: the formation of cosmological clumps affects the cosmological vacuum state matter over-densities move the dark energy field out of the potential minimum

  44. Extended Quintessence & New Gravity L H2 = (8p G/3)[r + stuff ] stuff = (1/8p GF)[r(1-8p G F) +ft2/2+(RF-f)/2+V-3HFt] F=¶ f /¶ R Ht = - 4p G[r + p + stuff ] stuff = (1/8p GF)[(r+p)(1-8p G F) +ft2+Ftt-HFt] G non-minimal coupling: f=F¢ R ,f new gravity: f(R) R/8p G ,y , ... Hwang 1991, generalized cosmologies

  45. Extended Quintessence L d Gmn=d Tmn Perrotta, Baccigalupi, Matarrese, PRD 2000, Baccigalupi, Matarrese, Perrotta, PRD 2000 dk2=4p k3(dr /r)k2 m c2eff,  1 Perrotta, Baccigalupi 2002 G ,f ,y d Gmn=D Tmn , ... Perrotta et al. 2003, PRD submitted

  46. Non-linear Clustering in Extended Quintessence L d Gmn=D Tmn ds2=a2[(-1+2F)dh2+(1-2Y)gijdxidxj] r2Y = (1/2F)[a2Drm+a2D U+r 2(D F)+|r(Df) |2/2] r2F=(1/2F)[a2Drm-2a2D U-r 2(D F)] r2(Df) =a2D U-(dF/df /2F)[a2Drm+4a2D U+3r 2(D F)+|r(Df) |2/2]-a2D (dF/df )R G ,f ,y , ... Perrotta et al. 2003, PRD submitted

  47. Non-linear Clustering in Extended Quintessence L d Gmn=D Tmn ds2=a2[(-1+2F)dh2+(1-2Y)gijdxidxj] r2Y = (1/2F)[a2Drm+a2D U+r 2(D F)+|r(Df) |2/2] r2F=(1/2F)[a2Drm-2a2D U-r 2(D F)] r2(Df) =a2D U-(dF/df /2F)[a2Drm+4a2D U+3r 2(D F)+|r(Df) |2/2]-a2D (dF/df )R G ,f ,y , ... Perrotta et al. PRD 2004

  48. L Continua… • CMB & bispectrum,*observability*, vary cosmological parameters, non-linearity, … • N-body, gain statistics, check concentration dependence on w(z), *lensing*… • Generalized cosmologies, are *dark haloes* affected? If so, check with N-body, … f

  49. L Dark Energy f

More Related