1 / 17

Overview of Network & Complex Systems Courses at IUB IUB Faculty

Overview of Network & Complex Systems Courses at IUB IUB Faculty Network & Complex Systems Talk, September 3rd, 2007. Overview. CSCI P538 Computer Networks by Minaxi Gupta , Computer Science I590, I400 and I-H400 Systems Biology: A User's Guide by Santiago Schnell, Informatics

sallybell
Download Presentation

Overview of Network & Complex Systems Courses at IUB IUB Faculty

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Overview of Network & Complex Systems Courses at IUB IUB Faculty Network & Complex Systems Talk, September 3rd, 2007

  2. Overview • CSCI P538 Computer Networks by Minaxi Gupta, Computer Science • I590, I400 and I-H400 Systems Biology: A User's Guide by Santiago Schnell, Informatics • INFO-I 400/590 Biologically Inspired Computing by Luis Rocha, Informatics • COGS-Q700 Evolution and Analysis of Brain-Body-Environment Systems by Randy Beer, Informatics • Sustainable Development Systems by Tom Evans, Geography • S604 The Semantic Web by John Paolillo, SLIS & Informatics • S660 Social Networks in Sociology by Bernice Pescosolido, Sociology • L600 Networks & Complex Systems talks Katy Börner, SLIS Overview of Network & Complex Systems Courses at IUB.

  3. Computer Networks by Minaxi Gupta, Computer Science Fall 2007: CSCI P538 (3 credits) “Computer Networks” Time/Venue: Tue, Thu 9:30am-10:45am in GL101 Textbook: “Computer Networks: A Systems Approach” by Peterson and Davie, 4th edition The goal of this course is to learn about computer networks. We will do so by understanding how computer networks work today and why they are designed the way they are. The course will primarily focus on the Internet but will also cover other past and present network technologies to put things in perspective. • The course emphasizes practice. The programming projects are derived from real-world operational and security issues facing today’s Internet. Course load: 6-8 assignments, 2 exams, 3-5 projects to be done in groups of two ~20 Students (mostly from CS and Informatics) • P538 is jointly offered with P438 this year Overview of Network & Complex Systems Courses at IUB.

  4. Overview of Network & Complex Systems Courses at IUB.

  5. INFO-I 400/590 Biologically Inspired Computing by Luis Rocha, Informatics • What is Life? • What is Computation? • Imitation of Life • Artificial Life and Complex Systems • Evolutionary Algorithms • Learning • Collective Behavior • Computer Immune Systems • Bio-inspired Artifacts • Bio-inspired algorithms in Computational Biology • Computing with Natural Means Web page http://informatics.indiana.edu/rocha/i-bic Blog http://life-inspired.blogspot.com/ Overview of Network & Complex Systems Courses at IUB.

  6. Overview of Network & Complex Systems Courses at IUB.

  7. Overview of Network & Complex Systems Courses at IUB.

  8. The Semantic Webby John Paolillo, SLIS/Informatics SLIS L597 Topics In Library and Information Science, 3 credits Thursdays, 5:45-8:30 PM, LI 002 Format: Lecture/discussion; lab; student presentations. This course covers: • Aims and goals of the Semantic Web • Technologies used in implementing the Semantic Web • Markup languages (XML, RDF) • Vocabularies (RDF-S, OWL, FOAF, RSS, etc.) • Metadata standards (W3C) • Query languages (RDQL and related) • Platforms for storage and use of SW data (Sesame, SWI-Prolog) • Applications of Semantic Web data • Weblogs, online communities, social networking sites, folksonomies, multimedia, etc. • Emergent Semantics of Metadata • What is the ultimate outcome of the adoption of Semantic Web technologies? Course structure: Readings, exercises in using and processing Semantic Web data, final project and presentation. Course syllabus: http://ella.slis.indiana.edu/%7Epaolillo/Teaching/S604f07 Overview of Network & Complex Systems Courses at IUB.

  9. S660 Social Networks in Sociology by Bernice Pescosolido, Sociology Overview of Network & Complex Systems Courses at IUB.

  10. L600 Networks & Complex Systems talks Katy Börner, SLIS SLIS graduate course, 1 credit Time: Mon 6-7pin the Wells (Main) Library, Room 001 Grading is based on the attendance of 8 talks (sign-up sheets will be provided) and a 4-5 page write-up that synergizes/aggregates major points made by a subset of the speakers to be submitted at the end of the semester. Class Webpage:http://vw.indiana.edu/talks-fall07/ Overview of Network & Complex Systems Courses at IUB.

  11. Other Related Courses that might NOT be taught in Fall 2007 • Artificial Life as Approach to AI by Larry Yaeger, Informatics • Agent-Based Modeling and GIS by Hamid Ekbia, SLIS (Summer and Fall 08) • P448/P548/M448/M548 Mathematical Biology by James Glazier, Physics (Spring 08) • Social Network Analysis by Stanley Wasserman, Sociology & Psychology • S651 Network Analysis by Stan Wasserman, Statistics, Sociology, Psychological and Brain Sciences • Complex Adaptive Systems by Eliot Smith & Robert Goldstone, Psychology • The Simplicity of Complexity by Alessandro Vespignani & Alessandro Flammini, Informatics • I601 Introduction to Complexity by Alessandro Vespignani & Alessandro Flammini, Informatics • Web Mining by Filippo Menczer, Informatics • Fundamentals of Computer Networks by Beth Plale, Computer Science • Internet Services & Protocols by Minaxi Gupta, Computer Science • I400/I590 (cross-listed in Cognitive Science) Seek and Find: Search Strategies in Space and Time by Peter M. Todd, Informatics& Psychological and Brain Sciences • P582 Biological and Artificial Neural Networks by John Beggs, Physics • I690 Mathematical Methods for Informatics by Santiago Schnell, Informatics • COGS-Q580 An Introduction to Dynamical Systems in Cognitive Science by Randall Beer, Cognitive Science, Computer Science, and Informatics at IU • 400/590 Structure of Information Environments by Peter Todd, Psychology & Informatics • S604 Structural Data Mining & Modeling by Katy Börner, SLIS • S637 Information Visualization by Katy Börner, SLIS (Spring 08) Overview of Network & Complex Systems Courses at IUB.

  12. Seek and Find: Search strategies inspace and timeby Peter Todd, Informatics/Cognitive Science Informatics I400/I590 Topics course (grad/undergrad), cross-listed in Cognitive Science; Tu-Th 1-2:15 pm, Informatics 107; 3 credits Format: Discussion of papers; presentations led by students. This course covers: • Strategies that humans (and other animals) use to decide where and how to search and when to stop searching, in a variety of domains including: • …foraging for food in the wild • …foraging for information on the Web • …shopping for a bargain • …looking for a parking space • …seeking a job • …searching for a mate • Emergent patterns that arise when many individuals look for things at the same time • Co-adaptation of strategies for searching and strategies for hiding (or being found) • How computational tools can be built using these ideas to help people do a better job at finding what they seek. Course structure: Students read papers for each class and come up with discussion questions for each one, and research and present a particular topic on search and develop a Wiki page on that topic. Papers will be distributed in class. Class webpage in OnCourse CL Overview of Network & Complex Systems Courses at IUB.

  13. Biological and Artificial Neural Networksby John Beggs, Physics P 582: Biological and Artificial Neural Networks, 3 credits Format: Three weekly classes, regular homework, and a final project presentation. Meetings: Mon, Wed, Fri 1:25p-2:15p in Swain West 218 Text: Neural Networks, an introduction, by Muller, Reinhardt, and Strickland We will first cover the biological details of neurons that are thought to be computationally relevant. Next we will explore major artificial neural network theories and models, many of which draw from statistical physics. Finally, we will cover experimental data from living neural networks and critically evaluate neural network theories that claim to describe biological phenomena. Overview of Network & Complex Systems Courses at IUB.

  14. The Simplicity of Complexity by Alessandro Vespignani & Alessandro Flammini, Informatics INFO I690 (soon to become I601) 3 credits Introduction to Complex Systems Format: Two weekly classes, bi-weekly assignments, final project presentation. Time: Tue, Thu 9:30a-10:45a in G L101 ~16 Students ( from Informatics, but also Phys, Chem., Bio, CS, Math) “…..The course is meant to provide a set of interpretative tools, both theoretical and computational, that will help to better describe, model and understand Complexityas we perceive it today, the final aim being able to see the "unifying picture" beyond the foggy curtain of peculiaritities that individual complex system may display….. Overview of Network & Complex Systems Courses at IUB.

  15. FRACTALS CHAOS STRANGE ATTRACTORS COMPLEX SYSTEMS COMPUTATION RECURSIVITY ORDER FROM DISORDER MODELING & SIMULATION SCALE INVARIANCE COMPLEX ARCHITECTURE EMERGENT BEHAVIOR NETWORKS

More Related