Презентация на тему
This presentation is the property of its rightful owner.
Sponsored Links
1 / 12

Презентация на тему тиристоры… PowerPoint PPT Presentation


  • 903 Views
  • Uploaded on
  • Presentation posted in: General

Презентация на тему тиристоры…. ПОДГОТОВИЛИ СТУДЕНТЫ 3 КУРСА Крупянский Юрий и Товпенец Никита. Тиристоры. Общее представление.

Download Presentation

Презентация на тему тиристоры…

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


5292055

Презентация на тему тиристоры…

ПОДГОТОВИЛИ СТУДЕНТЫ 3 КУРСА

Крупянский Юрий

и Товпенец Никита


5292055

Тиристоры


5292055

Общее представление

Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с четырёхслойной структурой р-n-p-n-типа, обладающий в прямом направлении двумя устойчивыми состояниями — состоянием низкой проводимости (тиристор заперт) и состоянием высокой проводимости (тиристор открыт). В обратном направлении тиристор обладает только запирающими свойствами. Т.е тиристор — это управляемый диод. Тиристоры подразделяются на тринисторы, динисторы и симисторы. Перевод тиристора из закрытого состояния в открытое в электрической цепи осуществляется внешним воздействием на прибор: либо воздействие напряжением (током), либо светом (фототиристор). Тиристор имеет нелинейную разрывную вольтамперную характеристику (ВАХ).


5292055

Устройство тиристора

Основная схема тиристорной структуры представляет собой четырёхполюсный p-n-p-n прибор, содержащий три последовательно соединённых p-n перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою — катодом. В общем случае p-n-p-n прибор может иметь два управляющих электрода (базы), присоединённых к внутренним слоям. Прибор без управляющих электродов называется диодным тиристором (или динистором). Прибор с одним управляющим электродом называют триодным тиристором или тринистором (или просто тиристором).


5292055

ВАХ тиристора

  • ВАХ тиристора (с управляющими электродами или без них) приведена на рис 2. Она имеет несколько участков:

  • Между точками 0 и 1 находится участок, соответствующий высокому сопротивлению прибора — прямое запирание.

  • В точке 1 происходит включение тиристора.

  • Между точками 1 и 2 находится участок с отрицательным дифференциальным сопротивлением.

  • Участок между точками 2 и 3 соответствует открытому состоянию (прямой проводимости).

  • В точке 2 через прибор протекает минимальный удерживающий ток Ih.

  • Участок между 0 и 4 описывает режим обратного запирания прибора.

  • Участок между 4 и 5 — режим обратного пробоя.


5292055

Режимы работы тиристора.Режим обратного запирания

В режиме обратного запирания к аноду прибора приложено напряжение, отрицательное по отношению к катоду; переходы J1 и J3 смещены в обратном направлении, а переход J2 смещён в прямом . В этом случае большая часть приложенного напряжения падает на одном из переходов J1 или J3 (в зависимости от степени легирования различных областей). Пусть это будет переход J1. В зависимости от толщины Wn1 слоя n1 пробой вызывается лавинным умножением (толщина обеднённой области при пробое меньше Wn1) либо проколом (обеднённый слой распространяется на всю область n1, и происходит смыкание переходов J1 и J2).


5292055

Режим прямого запирания

  • Режим прямого запирания

  • При прямом запирании напряжение на аноде положительно по отношению к катоду и обратно смещён только переход J2(коллекторный). Переходы J1 и J3 смещены в прямом направлении. Большая часть приложенного напряжения падает на переходе J2. Через переходы J1 и J3 в области, примыкающие к переходу J2, инжектируются неосновные носители, которые уменьшают сопротивление перехода J2, увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через тиристор сначала растёт медленно, что соответствует участку 0-1 на ВАХ. В этом режиме тиристор можно считать запертым, так как сопротивление перехода J2 всё ещё очень велико. По мере увеличения напряжения на тиристоре снижается доля напряжения, падающего на J2, и быстрее возрастают напряжения на J1 и J3, что вызывает дальнейшее увеличение тока через тиристор и усиление инжекции неосновных носителей в область J2. При некотором значении напряжения (порядка десятков или сотен вольт), называется напряжением переключения VBF (точка 1 на ВАХ), процесс приобретает лавинообразный характер, тиристор переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи


5292055

Зависимость коэффициента передачи αот тока эмиттера

  • В области малых токов основная причина зависимости αот токаIсвязана с рекомбинацией в эмиттерном переходе. При наличии рекомбинационных центров в области пространственного заряда эмиттерного перехода прямой ток такого перехода в области малых прямых смещений – рекомбинационный Jрек. Зависимость этого тока от напряжения экспоненциальная, но показатель экспоненты в два раза меньше, чем для диффузионного тока JpD.

  • По мере роста прямого напряжения на p-n переходе диффузионная компонента тока JpD начинает превалировать над рекомбинационной. В терминах эффективности эмиттера это эквивалентно возрастанию эффективности эмиттера, а следовательно, и увеличению коэффициента передач α = γ·χ. На рисунке 6 показана зонная диаграмма эмиттерного перехода, которая иллюстрирует конкуренцию двух токов – рекомбинационного и диффузионного в токе эмиттера, а на рисунке 8 – типичная зависимость коэффициента передачи αот тока эмиттера Iэ при наличии рекомбинационных центров в ОПЗ p-n перехода.


5292055

Зависимость коэффициента ударной ионизации М от напряжения(Vg). Умножение в коллекторном переходе.

  • Другой физический механизм, приводящий к накоплению объемных зарядов в базах тиристора, связан с лавинным умножением в коллекторном переходе. При больших значениях обратного напряжения на p-n переходе величина электрического поля Е в области пространственного заряда может приблизиться к значению, соответствующему напряжению лавинного пробоя. В этом случае на длине свободного пробега λэлектрон или дырка набирают энергию qλE, большую, чем ширина запрещенной зоны полупроводника qλE > Еg и вызывает генерацию новой электронно-дырочной пары. Это явление аналогично лавинному пробою в стабилитронах.

  • Таким образом, умножение в коллекторе может служить причиной накопления объемных зарядов в базах тиристора. С формальной точки зрения, умножение в коллекторе эквивалентно росту коэффициента передачи и величине коллекторного тока.


5292055

Динистор и тринистор

Тиристор с двумя выводами работает как двухполюсник – динистор

Тиристор с управляющим электродом - тринистор

p1

n1

p2

n2


5292055

Симистор

  • Симиcтop (от симметричный тиристор) - полупроводниковый прибор, используемый для управления цепями с переменным напряжением. В электронике он рассматривается как управляемый выключатель. В закрытом состоянии проводимость между управляемыми электродами отсутствует. При подаче управляющего тока на управляющий электрод симистора, возникает проводимость между управляемыми электродами. Причём симистор в открытом состоянии проводит ток в обоих направлениях


5292055

Применение тиристоров

  • Электронные ключи

  • Управляемые выпрямители

  • Преобразователи (инверторы)

  • Регуляторы мощности (триммеры)


  • Login