Principles of radiation protection managing radiation protection
This presentation is the property of its rightful owner.
Sponsored Links
1 / 63

Principles of Radiation Protection – Managing Radiation Protection PowerPoint PPT Presentation


  • 55 Views
  • Uploaded on
  • Presentation posted in: General

Principles of Radiation Protection – Managing Radiation Protection. The Management Principles. JUSTIFICATION OPTIMISATION LIMITATION. Justification.

Download Presentation

Principles of Radiation Protection – Managing Radiation Protection

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Principles of radiation protection managing radiation protection

Principles of Radiation Protection – Managing Radiation Protection


The management principles

The Management Principles

JUSTIFICATION

OPTIMISATION

LIMITATION


Justification

Justification

  • No practice involving exposures to radiation should be adopted unless it produces sufficient benefit to the exposed individuals or to society to offset the radiation detriment it causes.

  • Justification of exposures is primarily the responsibility of the medical professional i.e. the Radiologist.

  • The expected clinical benefit associated with each type of procedure should have been demonstrated to be sufficient to offset the radiation detriment.


Justification1

Justification

Benefit of the radiation exposure must outweigh the risk of exposure

vs


Optimisation

Optimisation

  • All exposures and radiation doses must be kept

    • As

    • Low

    • As

    • Reasonably

    • Practicable

  • With economic and social factors taken into account

ALARP


Optimisation1

OPTIMISATION

For every exposure, operators must ensure that doses arising from the exposure are kept as low as reasonably practicable and consistent with the intended diagnostic purpose.

THIS IS OPTIMISATION


Optimisation2

OPTIMISATION

You are defined as an IRMER Operator

Your ‘optimisation’ is ensuring you leave the X-ray unit/LINAC in a safe condition fit for clinical use

Handover procedure


Optimisation staff dose investigation level dil

Optimisation – Staff Dose Investigation Level (DIL)


Dose investigation level

Dose Investigation Level

Once you start work with ionising radiation, you are subject to legal dose limits – 6 mSv per year for non-classified workers

However, we have to define a Dose Investigation Level

1.2 mSv per year

Or 0.1 mSv per month

This is a level of dose that should trigger an investigation in conjunction with your RPA, and ensures that you do not receive anywhere close to the legal limit.


Limitation

Limitation

  • In the UK, legislation stipulates annual limits for the amount of radiation that may be received by staff and members of the public

  • Limits are set such that deterministic effects never happen

  • Limits are set such that chances of stochastic effects are minimised


Legal dose limits patients

Legal Dose Limits - Patients

  • For examinations directly associated with illness – there are no dose limits


Legal dose limits radiation workers

Legal Dose Limits – Radiation Workers

  • Radiation workers are those exposed to radiation as part of their occupation

  • No benefit – only risk

  • Two subgroups depending on level of exposure:

    • Classified radiation worker

    • Non-classified radiation worker


Legal dose limits classified workers

Legal Dose Limits – Classified Workers

  • Receive high levels of radiation exposure

  • Very unlikely for dental

  • Require annual health check

  • Compulsory dose monitoring

  • For classified worker

    • Whole body 20 mSv per year effective dose (18 years old and above)

    • Lens of eye 150 mSv per year equivalent dose

    • Skin 500 mSv per year equivalent dose

    • Extremities (hands and feet etc) 500 mSv per year equivalent dose


Legal dose limits for non classified workers all radiation workers in this trust

Legal Dose limits for non-classified workers (all radiation workers in this Trust)

  • Very unlikely you will need to be classified

    • You only need to be classified if you are considered to approach 3/10ths of any dose limit

  • Relevant dose limit for you is 6 mSv whole body effective dose

  • Very unlikely to exceed this per year

  • We use a dose constraint of 0.1 mSv per month for RT and X-ray engineers

  • Risk assessment usually show it is very unlikely this will be exceeded

  • We monitor routinely with dose badges


Legal dose limitation public

Legal Dose Limitation - Public

  • The annual dose limit for a member of the public (e.g. office worker in room next door to x-ray)

    • 1 mSv/yr

    • But we use a dose constraint of 0.3mSv/yr


Radiation dose

RADIATION

TISSUE

Radiation Dose

  • Absorbed Dose (Jkg-1)

    • Amount of energy deposited per kilogram

    • Dose to an organ or tissue

    • Unit is the Gray (Gy)

  • DOSE TO A CERTAIN PLACE IN THE BODY

  • Effective Dose (Jkg-1)

    • This is the average dose to whole body

    • Unit is the Sievert (Sv)

    • This gives us the risk of contracting cancer of the x ray exposure

  • THIS IS THE OVERALL DOSE TO THE WHOLE BODY


Tissue weighting factors

Tissue Weighting Factors


Risks associated with x rays

Risks Associated with X rays

  • Adult Exposure (per 1 mSv)

    • Fatal cancer (all types)1 in 20,000

    • Fatal leukaemia1 in 200,000

    • Non fatal cancer1 in 100,000

    • Heritable effects1 in 80,000

  • Childhood exposure

    • Fatal cancer1 in 10,000

  • Foetal exposure

    • Fatal cancer to 15 years1 in 10,000

    • All cancers to 15 years1 in 17,000

    • Heritable effects1 in 42,000


Small risks so why worry

Small Risks, So why worry?...

  • Average effective dose for radiography ~0.5 mSv

  • Risk of fatal cancer only 1 in 40,000

  • But, large number of patients

    • 40 000 000+ procedures.

    • Therefore, 700 patients ‘killed’ each year due to x-rays.

  • So:

    • All exposures must be JUSTIFIED.

    • Doses to patients, and staff, must be As Low As Reasonably Achievable (ALARA principle).


Typical doses in diagnostic radiology

Typical doses in Diagnostic Radiology


Other risks

Other Risks


Doses in perspective

Doses in Perspective

  • Effective dose from natural background radiation in the UK is approximately 2.7 mSv

  • This is 2000 times greater than a dental exposure

  • This natural radiation comes from

    • cosmic rays,

    • rocks and soil,

    • food,

    • radon.

  • Artificial radiation comes from:

    • Fallout from nuclear explosions

    • Radioactive waste discharged from nuclear power plants

    • Medical and dental exposures

    • Occupational exposures


Practical methods to restrict your radiation exposure

Practical methods to restrict YOUR radiation exposure

  • Time

  • Distance

  • Shielding


Principles of radiation protection managing radiation protection

The real risk to staff


Keep the time exposed to a minimum but

Keep the Time exposed to a minimum, but..............


Principles of radiation protection managing radiation protection

  • Double distance = 1/4 dose

  • Triple distance = 1/9th dose.

In air, x-rays obey the Inverse Square Law.

I∞1/d2


Distance

Distance

  • Operator B receives only a quarter of the radiation received by Operator A if he is standing twice the distance from the source

  • Operator B receives only one ninth of the radiation received by Operator A is he is standing 3 times the distance from the source


Principles of radiation protection managing radiation protection

Shielding


Principles of radiation protection managing radiation protection

Shielding


Dose monitoring

Dose monitoring

  • Film badges

  • Thermoluminescent dosemeters (TLD)

    • Badge

    • Extremities

  • Ionisation chambers


Film badges

Film badges

  • Plastic frame

  • Worn outside of clothes for 1 to 3 months

    • Advantages:

    • Provide a permanent record of dose

    • Measure type and energy of radiation

    • Simple and robust

    • Disadvantages

    • No immediate indication of exposure

    • Processing can lead to errors

    • Prone to filter loss


Principles of radiation protection managing radiation protection

TLD

  • Similar use as for film badges

  • They absorb radiation and release this as light when heated

    • Advantages:

    • Re-usable

    • Easy to read out

    • Disadvantages:

    • Read out is destructive

    • Limited info on type of radiation


Ionization chambers

Ionization chambers

  • Used by scientific personnel to measure beam dose

  • Radiation ionises air inside chamber which produces a current of electricity

  • Advantages

    • Very accurate

    • Immediate read out

  • Disadvantages

    • No permanent record

    • No indication of type of radiation

    • Fragile and easliy damaged


Patient doses in radiography patient dose limitation practical principles of radiation protection

Patient Doses in Radiography - Patient Dose Limitation & Practical Principles of Radiation Protection


What are patient doses

What are patient doses?

  • Absorbed dose in mGy

    • Dose to a certain place in the body (eg skin dose)

  • Effective dose in mSv

    • Takes into account the tissues that have been exposed


How do we measure these in practice

How do we measure these in practice?

  • Dose Area Product meters (DAP)

  • Skin dose:

    • kV, mAs, focus to skin distance

  • Screening time

  • Dose Length Product (CT Scanning)


Dose area product

Dose Area Product

Stochastic risks approx. proportional to DAP

Skin dose is DAP / area irradiated

1 Gy.cm2 3 mGy skin dose

1 Gy.cm2 0.2 mSv effective dose .


Largest exposure from man made radiation is medical

Largest Exposure from man-made radiation is Medical

46 million medical & dental x-raysin UK annually

Major Contributors to UK collective dose from medical x-rays

2008 data – HPA-CRCE-012 published Dec 2010


Principles of radiation protection managing radiation protection

RADIATION EXPOSURE OF THE UK POPULATION FROM MEDICAL AND DENTAL X-RAY EXAMINATIONS

From NRPB/HPA data

2008 data – HPA-CRCE-012 published Dec 2010


Principles of radiation protection managing radiation protection

RADIATION EXPOSURE OF THE UK POPULATION FROM MEDICAL AND DENTAL X-RAY EXAMINATIONS

From NRPB/HPA data


Uk annual collective dose man sv

UK Annual Collective Dose (man Sv)


Hundreds of cancer cases blamed on dentist x rays

Hundreds of cancer cases blamed on dentist x-rays

Independent.co.uk By Jeremy Laurence, Health Editor Friday, 30 January 2004

Radiation from X-rays in dentist surgeries and hospitals causes 700 people in Britain to develop cancer each year, researchers say today.


700 cancer cases caused by x rays

700 CANCER CASES CAUSED BY X-RAYS

X-RAYS used in everyday detection of diseases and broken bones are responsible for about 700 cases of cancer a year, according to the most detailed study to date.

The research showed that 0.6 per cent of the 124,000 patients found to have cancer each year can attribute the disease to X-ray exposure. Diagnostic X-rays, which are used in conventional radiography and imaging techniques such as CT scans, are the largest man-made source of radiation exposure to the general population.Although such X-rays provide great benefits, it is generally accepted that their use is associated with very small increases in cancer risk.

30 January 2004


Principles of radiation protection managing radiation protection

Researchers from Oxford University and Cancer Research UK estimated the size of the risk based on the number of X-rays carried out in Britain and in 14 other countries.

According to their findings, published in the medical journal The Lancet, the results showed that X-rays accounted for 6 out of every 1,000 cases of cancer up to the age of 75, equivalent to 700 out of the 124,000 cases of cancer diagnosed each year.


Un necessary exposures

Un-necessary exposures

Those exposures that are:

unlikely to be helpful to patient management, or

are not As Low As is Reasonably Practicable in order to meet a clinical objective.


Practical optimisation for patient protection alara

Practical Optimisation for Patient Protection- ALARA


Factors affecting patient dose

Factors affecting Patient Dose

Field Size (Collimation)

Tube voltage (kV)

Beam filtration

Tube to patient distance

Film/Sensor speed – (Direct Digital or CR)


Collimation collimation collimation

Collimation, Collimation, Collimation

Cover only the area needed

  • Small fields give lower dose (and less scatter, therefore better image)

  • Avoid more radiosensitive areas - e.g. gonads, female breast

  • Position carefully.


Principles of radiation protection managing radiation protection

Optimal collimation will result in :

Lower patient dose

Lower occupational dose

Improved image quality

Collimation, Collimation, Collimation


Tube voltage kv intra oral

Tube Voltage (kV) – Intra-oral

Higher kV (Quality) = lower skin dose

trade off = less contrast


Filtration

Filtration

Low energy radiation = patient skin dose for no diagnostic value.

Added filtration = lower patient skin dose

Increases beam quality

trade off = less contrast


Minimum filtration

Minimum Filtration

 70kVp  1.5 mm Al

> 70kVp  2.5 mm Al

<1.5 mm Al – Filtration must be increased

Also possible to have too much filtration.


Tube to patient distance or focus to skin distance fsd

Tube to Patient Distance orFocus to Skin Distance (FSD)

Greater FSD = lower patient dose

Greater FSD = less magnification (so fewer distortions).


Digital sensors

Digital Sensors

Higher doses = clearer images

Lower doses = noisier images

Easy to not optimise doses as it is not so obvious when overexposure occurs.

But underexposure results in grainy images.

In our experience CR is slightly higher dose than film

DR is lower dose than film and CR


Patient doses diagnostic reference levels

Patient Doses – Diagnostic Reference Levels


There are no patient dose limits

There are no patient dose limits!!!

  • Whilst there are no dose limits set for patient exposures, various surveys conducted over the past 25 years indicate a wide variation in doses for the same examination.

  • Itis therefore considered that there is significant scope for improvement in the optimisation of patient protection.


National diagnostic reference levels drls

NationalDiagnostic Reference Levels (DRLs)


Conclusion

Conclusion

Justify – Optimise – Limit

Time – Distance - Shielding

Collimate

Choose Correct Voltage & Dose

Use the handover procedure

Remember to Consult your RPA, they will give you Relevant Protection Advice – if in doubt ASK.


Management of radiation protection in this trust

Management of Radiation Protection in this Trust


In this trust

In This Trust

  • Radiation Safety Policy is embedded into the general Health & Safety Policy CP137

  • Radiation Physics website www.hullrad.org.uk contains additional guidance:

    • Staff & Patient Pregnancy

    • Diagnostic Reference Levels

    • Dose Investigation Levels

    • Duties of the RPS

    • Personal Dose Monitoring

    • Local Rules


Principles of radiation protection managing radiation protection

Help …

  • Radiation Protection Advisers

    • John Saunderson – x76-1329

    • Craig Moore – x76-1385

  • Rad’n Prot’n Team

    • Andrew Davis, Dave Strain, Tim Wood – ext. 76-1330

  • X-Ray engineers

    • Andy Patchett & team – Medical Physics - HRI ext. 5756

  • Oncology Physics Team

    • Sean McManus and Co. x 76-1367

  • Radiation Protection website

    • www.hullrad.org.uk

  • Trust Policy CP137


Principles of radiation protection managing radiation protection

END


  • Login