Non linear regression
Download
1 / 54

Non-linear regression - PowerPoint PPT Presentation


  • 111 Views
  • Uploaded on

Non-linear regression. All regression analyses are for finding the relationship between a dependent variable (y) and one or more independent variables (x), by estimating the parameters that define the relationship.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Non-linear regression' - pete


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Non linear regression
Non-linear regression

  • All regression analyses are for finding the relationship between a dependent variable (y) and one or more independent variables (x), by estimating the parameters that define the relationship.

  • Non-linear relationships whose parameters can be estimated by linear regression: e.g, y = axb, y = abx, y = aebx

  • Non-linear relationships whose parameters can be estimated by non-linear regression, e.g,

  • Non-linear relationships that cannot be represented by a function: loess


Growth curve of e coli
Growth curve of E. coli

  • A researcher wishes to estimate the growth curve of E. coli. He put a very small number of E. coli cells into a large flask with rich growth medium, and take samples every half an hour to estimate the density (n/L).

  • 14 data points over 7 hours were obtained.

  • What is the instantaneous rate of growth (r). What is the initial density (N0)?

  • As the flask is very large, he assumed that the growth should be exponential, i.e., y = a·ebx (Which parameter correspond to r and which to N0?)


Sas program
SAS Program

/* Fictitious data */

data Ecoli;

Input Density @@;

Time = _N_;

lnD = log(Density);

datalines;

20.023 39.833 80.571 161.102 317.923 635.672 1284.544 2569.430

5082.654 10220.777 20673.873 40591.439 81374.642 163963.873

;

proc reg;

var Density lnD Time;

model lnD = Time;

plot Density*Time/ symbol='.';

plot lnD*Time/ symbol='.';

run;

This statement is necessary, otherwise Density will be an unknown variable for the reg procedure and the plot statement will fail.

Run, and ask students to compute parameters a and b from regression output. What is the initial density?


Body weight of wild elephant
Body weight of wild elephant

  • A researcher wishes to estimate the body weight of wild elephants.

  • He measured the body weight of 13 captured elephants of different sizes as well as a number of predictor variables, such as leg length, trunk length, etc. Through stepwise regression, he found that the inter-leg distance (shown in figiure) is the best predictor of body weight.

  • He learned from his former biology professor that the allometric law governing the body weight (W) and the length of a body part (L) states thatW = aLb

  • Use linear regression to find parameters a and b.


Sas program1
SAS Program

/*Fitcitious data */

data Elephant;

Input L W @@;

lnL = log(L);

lnW = log(W);

datalines;

0.3 1.657 0.4 2.500 0.5 4.680 0.6 7.075 0.7 10.070

0.8 11.988 0.9 14.836 1 18.318 1.1 23.496 1.2 27.897

1.3 36.796 1.4 44.611 1.5 50.183

;

proc reg;

var L W lnL lnW;

model lnW = lnL;

plot W*L/ symbol='.';

plot lnW*lnL/ symbol='.';

run;

Run and ask students to calculate the parameters a and b.


Dna and protein gel electrophoresis
DNA and protein gel electrophoresis

  • How to estimate the molecular mass of a protein?

    • A ladder: proteins with known molecular mass

    • Deriving a calibration curve relating molecular mass (M) to migration distance (D): D = F(M)

    • Measure D and obtain M

  • The calibration curve is obtained by fitting a regression model


Protein molecular mass
Protein molecular mass

  • The equation appears to describe the relationship between D and M quite well. This relationship is better than some published relationships, e.g., D = a – b ln(M)

  • The data are my measurement of D and M for a subset of secreted proteins from the gastric pathogen Helicobacter pylori (Bumann et al., 2002).

  • Write a SAS program to use the data to find parameters a and b

Bumann, D., Aksu, S., Wendland, M., Janek, K., Zimny-Arndt, U., Sabarth, N., Meyer, T.F., and Jungblut, P.R., 2002, Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori. Infect. Immun. 70: 3396-3403.


Area and radius
Area and Radius

What is the functional relationship between the area and the radius?


Toxicity study pesticide
Toxicity study: pesticide

What transformation to use?


Probit and probit transformation
Probit and probit transformation

  • Probit has two names/definitions, both associated with standard normal distribution:

    • the inverse cumulative distribution function (CDF)

    • quantile function

  • CDF is denoted (z), which is a continuous, monotone increasing sigmoid function in the range of (0,1), e.g.,(z) = p(-1.96) = 0.025 = 1 - (1.96)

  • The probit function gives the 'inverse' computation, formally denoted -1(p), i.e.,probit(p) = -1(p) probit(0.025) = -1.96 = -probit(0.975)

  • [probit(p)] = p, and probit[(z)] = z.


Sas program2
SAS program

Data Pesticide;

Input Dosage Percent @@;

NuProbit = probit(Percent/100);

Cards;

27 0.90 28 1.39 31 2.40 31 2.49 35 6.42 36 7.78 37 9.16

38 10.21 38 11.71 40 16.24 41 16.90 43 22.94 44 27.35

44 27.45 44 28.14 45 28.97 45 29.96 45 30.50 46 34.30

46 35.39 46 35.65 47 37.55 47 38.46 48 40.97 49 44.37

49 45.71 49 46.66 49 47.38 50 49.86 50 52.26 51 55.12

51 56.12 52 57.68 52 59.99 52 60.30 53 60.51 53 61.82

53 62.00 53 62.92 54 66.06 54 67.14 55 70.58 55 71.57

56 74.11 56 74.12 57 76.77 57 77.01 58 78.56 58 79.01

59 83.53 60 83.96 60 84.40 61 87.95 62 88.74 63 91.13

64 92.64 64 92.67 66 95.49 68 97.00 69 97.15

;

Procreg;

Model Percent = Dosage / R CLM alpha = 0.01 CLI;

Plot Percent*Dosage / symbol = '.';

Model NuProbit = Dosage / R CLM alpha = 0.01 CLI;

Plot NuProbit*Dosage / symbol = '.';

run;

Why divide Percent by 100?

Run and explain

CLM: CL of mean

CLI: CL of individual observation

Graphic contrast between the original and the transformed DV


Non linear regression1
Non-linear regression

  • In rapidly replicating unicellular eukaryotes such as the yeast, highly expressed intron-containing genes requires more efficient splicing sites than lowly expressed genes.

  • Natural selection will operate on the mutations at the slicing sites to optimize splicing efficiency.

  • Designate splicing efficiency as SE and gene expression as GE.

  • Certain biochemical reasoning suggests that SE and GE will follow the following relationships:


Guess initial values
Guess initial values

When GE=0 then SE = , so   0.4

When GE increases from 2 to 8, SE increases from 0.47 to 0.75, so   (0.75-0.47)/(8-2)  0.047

With   0.4 and   0.047, then SE for GE = 12 should be 0.4+0.04712 = 0.96, but the actual SE is only about 0.77. This must be due to the quadratic term GE2, i.e.,

(0.77 - 0.96) =  122, so

  - 0.002


A few more twists
A few more twists

The continuity condition requires that

The smoothness condition requires that

The two conditions implies that


Sas program3
SAS program

/* Fictitious data */

data Intron;

input SE GE @@;

datalines;

.46 1 .47 2 .57 3 .61 4 .62 5 .68 6 .69 7 .78 8 .70 9

.74 10 .77 11 .78 12 .74 13 .80 13 .80 15 .78 16

;

title 'Quadratic Model with Plateau';

proc nlin data=Intron;

parms alpha=.4 beta=.047 gamma=-.002;

GE0 = -.5*beta / gamma;

if (GE < GE0) then Y = alpha + beta*GE + gamma*GE*GE;

else Y = alpha + beta*GE0 + gamma*GE0*GE0;

model SE = Y;

if _obs_ =1 and _iter_ =. then do;

plateau =alpha + beta*GE0 + gamma*GE0*GE0;

put / GE0= plateau= ;

end;

output out=b predicted=SEp;

run;

Initial guestimates

A conditional statement needed to model the two segments

Write out GE0 and plateau (which could be computed from the estimated , , and . However, the output of these parameters contain rounding errors.

computes predicted values for plotting and saves them to data set b

Run and explain


Plot

proc sgplot data=b noautolegend;

yaxis label='Observed or Predicted';

refline 0.7775 / axis=y label="Plateau" labelpos=min;

refline 12.7476 / axis=x label="GE0" labelpos=min;

scatter y=SE x=GE;

series y=SEp x=GE;

run;


Fitting another function
Fitting another function

/* Fictitious data */

data Intron;

input SE GE @@;

datalines;

.46 1 .47 2 .57 3 .61 4 .62 5 .68 6 .69 7 .78 8 .70 9

.74 10 .77 11 .78 12 .74 13 .80 13 .80 15 .78 16

;

title 'Quadratic Model with Plateau';

proc nlin data=Intron;

parms alpha=.4 beta=.8 gamma=1;

model SE = (alpha+beta*GE)/(1+gamma*GE);

output out=b predicted=SEp;

run;

proc sgplot data=b noautolegend;

yaxis label='Observed or Predicted';

scatter y=SE x=GE;

series y=SEp x=GE;

run;

Run and explain the output



Robust regression
Robust regression

  • LOWESS: robust local regression between Y and X, with linear fitting

  • LOESS: robust local regression between Y and one or more Xs, with linear or quadratic fitting

  • Used with relations that cannot be expressed in functional forms

  • SAS: proc loess

  • Data:

    • Data set 1: monthly averaged atmospheric pressure differences between Easter Island and Darwin, Australia for a period of 168 months (NIST, 1998), suspected to exhibit 12-month (annual), 42-month (El Nino), and 25-month (Southern Oscillation) cycles (From Robert Cohen of SAS Institute)

    • Data set 2: Two-channel microarray data. Background correction and two-channel loess normalization (from Wudu).


Step 1: characterize the most obvious trend.

data ENSO;

input Pressure @@;

Month=_N_;

datalines;

12.9 11.3 10.6 11.2 10.9 7.5 7.7 11.7 12.9 14.3 10.9 13.7 17.1 14.0 15.3 8.5

5.7 5.5 7.6 8.6 7.3 7.6 12.7 11.0 12.7 12.9 13.0 10.9 10.4 10.2 8.0 10.9

13.6 10.5 9.2 12.4 12.7 13.3 10.1 7.8 4.8 3.0 2.5 6.3 9.7 11.6 8.6 12.4

10.5 13.3 10.4 8.1 3.7 10.7 5.1 10.4 10.9 11.7 11.4 13.7 14.1 14.0 12.5 6.3

9.6 11.7 5.0 10.8 12.7 10.8 11.8 12.6 15.7 12.6 14.8 7.8 7.1 11.2 8.1 6.4

5.2 12.0 10.2 12.7 10.2 14.7 12.2 7.1 5.7 6.7 3.9 8.5 8.3 10.8 16.7 12.6

12.5 12.5 9.8 7.2 4.1 10.6 10.1 10.1 11.9 13.6 16.3 17.6 15.5 16.0 15.2 11.2

14.3 14.5 8.5 12.0 12.7 11.3 14.5 15.1 10.4 11.5 13.4 7.5 0.6 0.3 5.5 5.0

4.6 8.2 9.9 9.2 12.5 10.9 9.9 8.9 7.6 9.5 8.4 10.7 13.6 13.7 13.7 16.5

16.8 17.1 15.4 9.5 6.1 10.1 9.3 5.3 11.2 16.6 15.6 12.0 11.5 8.6 13.8 8.7

8.6 8.6 8.7 12.8 13.2 14.0 13.4 14.8

;

ods output OutputStatistics=ENSOstats FitSummary=ENSOsummary;

proc loess data=ENSO;

model Pressure=Month / CLM

smooth = 0.02 to 0.2 by 0.01

dfmethod=exact;

run;

symbol1 c=black i=join value=dot;

symbol2 c=black i=join value=none;

proc gplot data=ENSOstats;

by SmoothingParameter;

plot (DepVar Pred)*Month/overlay;

run;

The output data ENSOstats contains variables: SoothingParameter, Month, DepVar, Pred, etc.

Three criteria for choosing the smooth parameter:

GCV: generalized cross-validation (Craven and Wahba 1979)

AIC: Akaike information criterion (Akaike 1973)

AICC1: bias-corrected AIC (JUrvich and Simonoff 1988)


Summary output kd tree linear
Summary output: kd Tree, linear

max(1, n*s/5)

int(n*s), where n is ‘N. Fitting Points’ and s is ‘Smotthing Param.’



proc loess data=ENSO;

model Pressure=Month /

smooth = 0.01 to 0.2 by 0.01 dfmethod=exact degree = 2;

run;

SmoothingParameter=0.05

Pressure

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

Month


99 confidence limits
99% Confidence limits

ods output OutputStatistics=ENSOstats FitSummary=ENSOsummary;

proc loess data=ENSO;

model Pressure=Month / r CLM smooth = 0.05 alpha=0.01 dfmethod=exact;

run;

symbol1 c=black i=none value=dot;

symbol2 c=black i=join value=none;

symbol3 c=red i=join value=none;

symbol4 c=red i=join value=none;

proc gplot data=ENSOstats;

format DepVar 4.0;

plot (DepVar Pred UpperCl LowerCL)*Month/ overlay hminor = 0 vminor = 0 vaxis = axis1 frame;

run;


99% confidence limits

20

16

12

Pressure

8

4

0

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

Month


Step 2 characterize other trends
Step 2: Characterize other trends

  • /* modify data set ENSO to filter out the 12-month cycle */

  • data ENSO(drop=pi);

    • set ENSO;

    • pi = 4 * atan (1); /* or pi = 3.1415926 */

    • cos1 = cos(2*pi*Month/12);

    • sin1 = sin(2*pi*Month/12);

  • proc reg data=ENSO;

    • model Pressure = cos1 sin1;

    • output out=ENSO1 r=FilteredPressure;

  • run;

  • proc print data=ENSO1;

  • var Month Pressure FilteredPressure;

  • run;

  • ods output OutputStatistics=ENSO1stats;

  • proc loess data=ENSO1;

    • model FilteredPressure=Month/

    • smooth = 0.12;

  • run;

  • proc gplot data=ENSO1stats;

  • plot (DepVar Pred)*Month/overlay;

  • run;

r: residual, i.e., what is left after the monthly cycle has been removed.




42 month cycle
~42-month cycle

7

6

5

4

3

2

1

0

Residual

-1

-2

-3

-4

-5

-6

-7

-8

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

Month


Any other trend
Any other trend?

/* modify data set ENSO to filter out the 12-month cycle */

data ENSO(drop=pi);

set ENSO;

pi = 4 * atan (1);

cos1 = cos(2*pi*Month/12);

sin1 = sin(2*pi*Month/12);

cos2 = cos(2*pi*Month/42);

sin2 = sin(2*pi*Month/42);

proc reg data=ENSO;

model Pressure = cos1 sin1 cos2 sin2;

output out=ENSO1 r=FilteredPressure;

run;

proc print data=ENSO1;

var Month Pressure FilteredPressure;

run;

ods output OutputStatistics=ENSO1stats;

proc loess data=ENSO1;

model FilteredPressure=Month/

smooth = 0.12;

run;

proc gplot data=ENSO1stats;

plot (DepVar Pred)*Month/overlay;

run;


25 month cycle
~25-month cycle

6

5

4

3

2

1

0

Residual

-1

-2

-3

-4

-5

-6

-7

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

Month


Microarray
Microarray

  • Diagnosis

  • Signature genes

  • Gene regulation pathway

Avian coronavirus Bovine coronavirus


Spotted cdna microarray
Spotted cDNA Microarray

cDNA “B”

Cy3 labeled

cDNA “A”

Cy5 labeled

+

Laser 1 Laser 2

Scanning

Hybridization

DNA molecules are immobilized

by high-speed robots on a solid

surface such as glass.

+

Analysis

Image Capture



Basic microarray data analysis
Basic Microarray Data Analysis

  • Basic information

    • Channel 1 background and foreground intensity: B1, F1

    • Channel 2 background and foreground intensity: B2, F2

  • Because two-channel microarray typically use the red and green dye for the two channels, we have: Rb, Rf, Gb, Gf

  • Background correction

  • Within-slide normalization

  • Identification of differentiallyexpressed genes

    • Expectation of M is zero.

    • A gene is overexpressed (or underexpressed) if its M is significantly greater (or smaller) than 0


Routine analysis
Routine analysis

ODS GRAPHICS / ANTIALIASMAX=5800;

Data WuduPGF7;

Input X Y Ch1I Ch1B Ch2I Ch2B;

R=Ch1I - Ch1B;

G=Ch2I - Ch2B;

if R>0 and G>0 then do;

M=log2(R/G);

A=log2(R*G)/2;

end;

else do;

M=.;

A=.;

end;

cards;

2280 8520 469.22876 166.962967 231.892853 54.888889

2510 8500 443.9776 116.055557 295.28302 73.981483

..

;

proc sgplot;

scatter x=A y=M ;

run;



Microarray data background correction
Microarray data: Background correction

/*partial data from slide PGF7*/

Data WuduPGF7;

Input X Y Ch1I Ch1B Ch2I Ch2B;

cards;

2280 8520 469.22876 166.962967 231.892853 54.888889

2510 8500 443.9776 116.055557 295.28302 73.981483

2750 8500 421.165527 133.40741 227.327103 74.953705

2990 8510 401.165405 151.361115 223.877365 53.722221

...

;

proc g3d;

scatter X*Y=Ch1B;

run;

proc loess data=WuduPGF7;

model Ch1B=X Y/smooth=0.01 to 0.04 by 0.01 dfmethod=exact degree=2;

run;

Run the WuduPGFA.sas file


Two different kinds of clm
Two different kinds of CLM

ods output OutputStatistics=StatOut FitSummary=OutSummary;

proc loess data=WuduPGF7;

model M=A / r CLM smooth = 0.09 alpha=0.01 dfmethod=exact;

run;

symbol1 c=black i=none value=dot;

symbol2 c=black i=join value=none;

symbol3 c=red i=join value=none;

symbol4 c=red i=join value=none;

proc sort data=StatOut out = StatOut2;

by A;

run;

proc gplot data=StatOut2;

format DepVar 4.0;

plot (DepVar Pred UpperCl LowerCL)*A/ overlay;

run;

proc reg data=StatOut;

model Residual=A / R CLM alpha = 0.01 CLI ;

plot Residual *A / pred ;

run;








Summary output
Summary output

Which smoothing parameter is the best?


Fit background surface
Fit background surface

data PredGrid;

do Y = 8320 to 26230 by 230;

do X = 2220 to 20250 by 230;

output;

end;

end;

ods output ScoreResults=Ch1Bscore;

proc loess data=WuduPGF7;

model Ch1B=X Y/smooth=0.02 dfmethod=exact;

score data=PredGrid;

run;

proc g3d data=Ch1Bscore;

format X f4.0;

format Y f4.0;

format p_Ch1B f4.1;

plot X*Y=p_Ch1B/

tilt=60 rotate=80;

run;


Fitted channel-1 background: PGF Slide7

Predicted Ch1B

941

658

26E3

2E4

375

Y

14E3

91.4

2E4

14E3

8200

X

8320

2220


Sas statements for channel 2
SAS statements for Channel-2

/* With iterative reweighting */

proc loess data=WuduPGF7;

model Ch1B=X Y/smooth=0.01 dfmethod=exact ITERATIONS=5;

score data=PredGrid;

run;

proc g3d data=Ch1Bscore;

format X f4.0;

format Y f4.0;

format p_Ch1B f4.1;

plot X*Y=p_Ch1B/

tilt=60 rotate=80;

run;

ods output OutputStatistics=Wudustats;

proc loess data=WuduPGF7;

model Ch1B=X Y/smooth=0.01 dfmethod=exact ITERATIONS=5;

run;

proc g3d;

scatter X*Y=Pred;

run;


Fitted channel-1 background: PGF Slide7 with ITERATIONS = 5

250

197

Predicted Ch1B

26E3

2E4

144

Y

14E3

90.8

2E4

14E3

8200

X

8320

2220



ad