1 / 47

PP COLOBOC Final Report

PP COLOBOC Final Report. Jean-Marie Bettems / MeteoSwiss Juergen Helmert / DWD COSMO GM Roma, September 7 th , 2011. CO nsolidation of LO wer BO undary C ondition. COSMO priority project, 09.2008 – 09.2011 Goals Facilitate access to soil/surface observations

odette-bird
Download Presentation

PP COLOBOC Final Report

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PP COLOBOCFinal Report Jean-Marie Bettems / MeteoSwissJuergen Helmert / DWD COSMO GM Roma, September 7th , 2011

  2. COnsolidationofLOwerBOundaryCondition COSMO priority project, 09.2008 – 09.2011 Goals Facilitate access to soil/surface observations Consolidate toolsof general interest: externalized TERRA module software for generation of external parameters Consolidate and extend external parametersdatabase Find and validate an optimal configuration of TERRA Revision of snowanalysis and snow model Deployment of urbanmodule developed in Switzerland Consolidate parameterization of land surface heterogeneity

  3. Three years later… What has been achieved? Do we need a COCOLOBOC ?

  4. COLOBOC, task 0 Observation sets for model validation and development New instruments at PayerneMeasurement of turbulence @ 10m, in activity since spring 2009.Soil moisture and temperature kept after end of SwissSMEX Data exchange action within SRNWP

  5. Data exchange actionBackground • Goal: convenient access to recentoperationalhigh qualityobservations, representative for different climate and different type of soils • Action started in October 2009 with an official letter sent to a selection of NMS directors. • Agreement within the C-SRNWP Programme of EUMETNET :“I would like to emphasise that the data would be provided ONLY for the C-SRNWP members (particularly to the Expert Team members) with a significant time-lag after the observational time and for research purposes only.” • Resources from DWD (C.Heret, F.Beyrich), HNMS (T.Andreadis) and MCH (JM.Bettems) as contribution to the COLOBOC project. • Support from C-SRNWP coordinator (András Horányi) and from chair of SRNWP ET Soil and Surface (JF.Mahfouf)

  6. Data exchange actionData sets Valdai Debrecen • Access from COSMO web,password protected http://www.cosmo-model.org/srnwp/content/default.htm • Currently 7 sites,data from 2006-2010,in a commonASCII format • Soil, surface and BL observations • Agreement for two new sites: Debrecen (Hu),Valdai (Ru)

  7. Data exchange actionData sets – Examples Monthly CSV tables, for each site, with all parameters, incl. qc when availableMissing values are flagged with -9999.00CAB_200705.txt.gz #SRNWP data exchange action #Cabauw 51.971°N 4.927°E 20070501 00:10 - 20070601 00:00 UTC DATE;P0;Q_P0;RAIN;Q_RAIN;TAIR002;Q_TAIR002;TD002;Q_TD002;TAIR010;Q_TAIR010;TD010;Q_TD010;WSPEED010;Q_WSPEED010;WDIR010;Q_WDIR010;TAIR020;Q_TAIR020;TD020;Q_TD020;WSPEED020;Q_WSPEED020;WDIR020;Q_WDIR020;TAIR040;Q_TAIR040;TD040;Q_TD040;WSPEED040;Q_WSPEED040;WDIR040;Q_WDIR040;TAIR080;Q_TAIR080;TD080;Q_TD080;WSPEED080;Q_WSPEED080;WDIR080;Q_WDIR080;TAIR140;Q_TAIR140;TD140;Q_TD140;WSPEED140;Q_WSPEED140;WDIR140;Q_WDIR140;TAIR200;Q_TAIR200;TD200;Q_TD200;WSPEED200;Q_WSPEED200;WDIR200;Q_WDIR200;RSWD;Q_RSWD;RSWU;Q_RSWU;RLWD;Q_RLWD;RLWU;Q_RLWU;CLC;Q_CLC;USTAR;Q_USTAR;MOM;Q_MOM;HS;Q_HS;LE;Q_LE;TSOIL000;Q_TSOIL000;TSOIL002;Q_TSOIL002;TSOIL004;Q_TSOIL004;TSOIL006;Q_TSOIL006;TSOIL008;Q_TSOIL008;TSOIL012;Q_TSOIL012;TSOIL020;Q_TSOIL020;TSOIL030;Q_TSOIL030;TSOIL050;Q_TSOIL050;MSOIL008;Q_MSOIL008;G00;Q_G00;G005;Q_G005;G010;Q_G010 yyyyMMddhhmm;hPa;-;mm;-;°C;-;°C;-;°C;-;°C;-;ms-1;-;degree;-;°C;-;°C;-;ms-1;-;degree;-;°C;-;°C;-;ms-1;-;degree;-;°C;-;°C;-;ms-1;-;degree;-;°C;-;°C;-;ms-1;-;degree;-;°C;-;°C;-;ms-1;-;degree;-;Wm-2;-;Wm-2;-;Wm-2;-;Wm-2;-;%;-;ms-1;-;Nm-2;-;Wm-2;-;Wm-2;-;°C;-;°C;-;°C;-;°C;-;°C;-;°C;-;°C;-;°C;-;°C;-;-;-;Wm-2;-;Wm-2;-;Wm-2;- 200705010010;1017.30;g;0.00;g;11.00;g;4.70;g;11.60;g;4.70;g;4.62;g;61.50;g;11.70;g;4.50;g;5.17;g;63.40;g;11.80;g;4.50;g;7.17;g;66.04;g;11.90;g;4.00;g;9.65;g;70.25;g;11.90;g;3.90;g;12.17;g;73.79;g;12.50;g;2.60;g;14.21;g;82.79;g;0.00;g;0.00;g;295.30;g;359.90;g;-9999.00;m;0.32;g;0.13;g;-65.04;g;17.79;g;12.59;g;12.70;g;13.41;g;-9999.00;m;13.53;g;13.78;g;13.74;g;13.51;g;12.37;g;0.26;g;-8.43;g;-8.38;g;-45.50;g 200705010020;1017.30;g;0.00;g;11.00;g;4.90;g;11.60;g;4.80;g;4.02;g;61.30;g;11.70;g;4.70;g;4.99;g;63.50;g;11.70;g;4.60;g;6.84;g;66.75;g;11.80;g;4.10;g;9.45;g;70.34;g;11.80;g;4.00;g;11.97;g;74.18;g;12.50;g;2.60;g;14.04;g;84.06;g;0.00;g;0.00;g;290.45;g;356.64;g;-9999.00;m;0.25;g;0.08;g;-46.81;g;12.29;g;12.55;g;12.66;g;13.35;g;-9999.00;m;13.50;g;13.74;g;13.72;g;13.51;g;12.37;g;0.26;g;-8.43;g;-8.36;g;-45.58;g

  8. Data exchange actionParameters availability, Lindenberg, status 08.2012 LIN Availability [%]

  9. Data exchange actionParameters availability, Toulouse, status 08.2012 SPC Availability [%]

  10. COLOBOC, task3 Consolidate external parameters data set. Task 3.1: Document available data Task 3.2: Consolidate and extend database Add seasonal climatology of vegetation characteristics. Add parameters for subscale orography. Add parameters for orographic radiation correction. Add parameters for urban fraction. Add parameters for deep soil temperature. Add parameters for FLake. Provide alternative sets of soil types in Europe. Address the feasibility of deriving surface characteristics with known deficiencies (e.g. solar albedo) using alternative data sources or methods.

  11. Overall description of the External Parameter System Orography external parameters on target grid Soil data Land use

  12. ksh scripts Fortran programs (Fortran 2003/ Fortran 95) user defined grid Icon GME COSMO ksh scripts Fortran programs global icosahedral grid ksh scripts Fortran programs limited area domain COSMO GME current status external parameter generation new library “EXTPAR” external parameter generation

  13. external parameter fields for the COSMO model, total 15 fields planned extensions for the COSMO model, total 30 fields NDVI, NDVI_MX, NDVI_RATIO, AER_BC, AER_DUST, AER_SO4, AER_SS, T2M_CL, URBAN, RSMIN, EMISS_RAD, FR_LAKE, DEPTH_LK, SLOPE_ASP, SLOPE_ANG, HORIZON, SKYVIEW HH, FR_LAND, SOILTYP, Z0, SSO_STDH, SSO_GAMMA, SSO_THETA, SSO_SIGMA, PLCOV_MN, PLCOV_MX, LAI_MN, LAI_MX, FOREST_D, FOREST_E, ROOTDP HH, FR_LAND, SOILTYP, Z0, SSO_STDH, SSO_GAMMA, SSO_THETA, SSO_SIGMA, PLCOV_MX, LAI_MX, FOREST_D, FOREST_E, ROOTDP Consolidation and extension of database (COLBOC Task 3) : Additional external parameters

  14. GLOBE DSMW GLC2000, GlobCover2009 Currently used raw data for external parameters

  15. Additional raw datasets • NDVI (SEAWiFS) • climatology of near surface temperature (CRU) • climatology of aerosol optical thickness (I. Tegen) • lake depth database (30’’ gridded global field, Eakterina Kourzeneva: DWD, RSHU, MeteoFrance)

  16. Uncertainties The external parameters are only as good as the available raw data sets. GLCC USGS land use / land cover system GLC2000 land use classes (currently used) Globcover 2009

  17. COLOBOC, task 4 • Revision of TERRA and the associated look-up tables. • Gather and integrate tested developments of TERRA in official COSMO code - V4.11 2009/11/30 • Define a consolidated set of look-up tables – EXTPAR (ECOCLIMAP, GLOBCOVER) • Find and validate an ‘optimal’ reference configuration of TERRA, using the external parameters developed within task 3.2 with the consolidated look-up tables • Benefit: > Unification of physics in TERRA standalone, GME, and COSMO • > Appropriate configuration for all climate regions

  18. Long-term trend T2M-Bias

  19. GME configuration • Aerosol climatology • Emissivity • Vegetation climatology (LAI, PLCOV) • Minimum stomatal resistance (GLC2000, ECOCLIMAP) • Vegetation type albedo • Non-uniform root distribution

  20. External Parameters GME

  21. External Parameters GME

  22. External Parameters GME

  23. Vegetation albedo ROUTI Albedo (snow free):

  24. Vegetation albedo EXP EXP 7750 Masson (2003) - Ecoclimap Albedo (snow free):

  25. Global Verification EXP 7750 ECOCLIMAP+ALBEDO 02.06.2009-01.07.2009 00 UTC i192f SK: -5.68 SK: -6.03 SK: 1.02 Europe SK: -11.7 SK: -6.36 SK: -0.79 East Sibiria North America SK: -8.00 SK: -9.8 SK: -4.56 SK: 1.99 SK: 0.37 Tropics Africa SK: 2.62 Tropics America SK: 3.64 SK: 5.78 SK: 0.78

  26. Conclusions of GME EXP 7750 • PRS/LAI ratio and vegetation type albedo have strong impact on the split-up of fluxes • Positive impact on T_2M and TD_2M in temperate zones • Neutral or small negative impact in tropics • Since March 2011: Soil moisture analysis (SMA) in GME

  27. M. Lange Europe T2m Bias decreased by SMA Soil moisture increase during summer! Bias and Stdev T2m over Europe, avg(12, 15 GMT) Running time (2009) Soil moisture content over Europe, top layers Soil moisture content over Europe, bottom layers Running time (2009) Running time (2009)

  28. Experiments GME-SMA EXP 109/1009 20110310 - SMA-Monitoring (M. Lange)

  29. Validation Europe SMA Incr. Mean and Stdv top layers T2M Bias and Stdv SMA Incr. Mean and Stdv bottom layers

  30. Validation Europe Soil moisture W_SO (mm) top layers T2M Bias and Stdv SMA Incr. Mean and Stdv bottom layers

  31. Validation soil moisture: level 4

  32. Verification EUR TD2MD TMIN TMAX BIAS T2M FF VW PS DD TMAX T2M TD2MD TMIN RMSE PS DD FF VW

  33. COSMO Experiments

  34. Tested adaptions in int2lm and TERRA EXP 8309/8310 • Aerosol climatology – could explain increase in T2M-Bias • Emissivity • Vegetation climatology (LAI, PLCOV) • GLOBCOVER 2009 land use data • Minimum stomatal resistance (ECOCLIMAP) • Vegetation type albedo • Summer period : 01.07.2011-12.08.2011 • Non-uniform root distribution • Ground water with upward diffusion • Soil moisture dependent heat conductivity • Start with new model initialisation (8310 ROUTI config CTRL)

  35. Verification EXP vs CTRL 8309/8310 00 UTC 12.07.-12.08.2011 TD2MD TMIN TMAX BIAS T2M FF VW PS DD TMAX T2M TD2MD TMIN RMSE PS DD FF VW

  36. Verification EXP vs ROUTI 8309/ROUTI 00 UTC 12.07.-12.08.2011 T2M TMIN TMAX BIAS TD2MD FF VW PS DD TMAX T2M TD2MD TMIN RMSE PS DD FF VW

  37. Conclusions and Outlook • Resultsfrom GME experimentssuggestthatsoilmoistureanalysis (SMA) has a large impact on theresults • Difficultiesforparameterizationchangestooutperform SMA • Impact ofmodelinitialisationisimportant • Improved post-processingrequiredtoavoidexperiment • initialisationfrom large-scalemodels • Benefit: Unified land-surfaceschemefor global, regional, and stand-aloneapplication

  38. COLOBOC, task 5.1 Verify and consolidate the new multi-layer snow model Single layer Multi layers Implemented processes • Heat conduction • Phase changes, liquid water transport • Gravitational compaction + • metamorphosis • Solar radiation penetration • Heat conduction • Melting when snow surface • temperature > 0°C or • when soil surface • temperature > 0°C Numerical schemes • Arbitrary number of layers • Heat conduction: implicit • Latent heat and solar radiation: source terms 1 layer

  39. COLOBOC, task 5.1 Station at 2450m on the southern slope of the Alps Model at2350m Dh = -100m

  40. Review – COLOBOC, task 5.2 • Improved snow analysis • MeteoSwiss has extended the DWD snow analysis by introducing a MSG derived snow mask and by tuning the Cressman analysis of snow depth observations.Unified sfcana software is available. Composite fractional snow cover

  41. COLOBOC, task 7 Parameterization of land surface heterogeneity by the tile/mosaic approach.

  42. Observed 5cm deep soil temperatureStart of forecast Observed 2m temperatureStart of forecast Tiles – Motivation T_SO_3, 3 days forecast T2M, 3 days forecast One profile of temperature and moisture in the soil for snow covered and snow-free parts By any partial snow cover the soil temperature can not exceed 0ºC (equivalent to instantaneous horizontal heat transfer)

  43. Tiles – Implementation Eithermosaicortileapproach in the version 4.16, with a user-specified number of tiles or sub-grid mosaic pixels. surface type 3 surface type 4 User-defined parameters: ns_stat: number of static surface types ns_snow: number of those static surface types which can have snow as a separate tilesnow fraction for each of these typesis recomputed at each time step, i.e.dynamic tiles surface type 1 surface type 2 snow-free snow-free snow snow ns_snow ns_stat

  44. Summary of successes and misses

  45. Priority project COLOBOCFinal status (ok, finalized till end 2011, not all goals reached) T0. Observation sets for model validation and development > new instruments at Payerne> SRNWP data pool action, with 9 sites> coordination transferred to WG3b, resources guaranteed T1. Externalized TERRA module> consolidated package and documentation available on COSMO web site (based on COSMO 4.13)> not supported, open question in WG3b T2. Software for generation of external parameters> consolidated software EXTPAR v1.5> software and documentation are available (software available at DWD, soon on COSMO web site)> web portal soon operational T3. External parameters > Documentation of data sets available> Consolidated data set, with 15 new parameters T4. TERRA improvements > Implementation of TERRA developments into COSMO V4.11 2009/11/30> Definition of the consolidated set of look-up tables in EXTPAR > Experiments at MeteoSwiss and DWD showed mixed, neutral impact on verification scores> Physically more realistic, basis for further developments

  46. Priority project COLOBOCFinal status (ok, finalized till end 2011, not all goals reached) T5.1. Improved snow model> revised parameterization of snow albedo (incl. ageing)> revised parameterization of partial snow cover (height instead of snow water equivalent based)> proposition for a new parameterization of old snow density> new multi-layers snow model implemented in COSMO 4.11> still some stability issues for very shallow snow layers, corrections being investigated> official release, tested and documented, planned for Q2 2012 T5.2. Snow analysis> unified snow analysis software (MCH modifications merged in official sfcana) > altitudinal interpolation not available, temporal stability of analysis may be an issue T6. Urban module BEP> code and documentation available at MeteoSwiss (based on COSMO 4.7)> not supported, open question in WG3b T7. Parameterization of surface heterogeneities with the tile/mosaic approach > tile and mosaic implemented in COSMO 4.16> user configurable, dynamic tiles for snow supporting surface types> consolidated and official release planned for Q2 2012

  47. THE END COSMO GM Offenbach | postprocessing tooljean-marie.bettems@meteoswiss.ch

More Related