1 / 49

NLTE Model Atmospheres for Super-Soft X- ray Sources

NLTE Model Atmospheres for Super-Soft X- ray Sources. Thomas Rauch. Overview. “Born-Again” Post-AGB Stars Spectral Analysis of Hot, Compact Stars. Interior of AGB Stars. Post-AGB Evolution. Iben 1984, ApJ 277, 333. “Born-Again” Post-AGB Stars. AGB Final Thermal Pulse ( AFTP )

nariko
Download Presentation

NLTE Model Atmospheres for Super-Soft X- ray Sources

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NLTE Model Atmospheresfor Super-Soft X-raySources Thomas Rauch

  2. Overview • “Born-Again” Post-AGB Stars • Spectral Analysis of Hot, Compact Stars

  3. Interior of AGB Stars

  4. Post-AGB Evolution Iben 1984, ApJ 277, 333

  5. “Born-Again” Post-AGB Stars • AGB Final Thermal Pulse (AFTP) • MH  10-2 Mʘ,MHe  10-2 Mʘ •  40% H left on surface • Late Thermal Pulse (LTP) • MH  10-4 Mʘ,MHe  10-2 Mʘ • 1% H left on surface (not detectable) • Very Late Thermal Pulse (VLTP) • MH  10-4 Mʘ,MHe  10-2 Mʘ • no H burning shell, H burned at bottom of He burning shell • no H left

  6. Interior of AGB Stars Direct view on intershell matter allows to conclude on details in nuclear processes and mixing processes in AGB stars  Test for stellar-evolution models

  7. Model Atmospheres • LTE (Local Thermodynamical Equilibrium) • dimension of region in LTE > mean free path of photons • occupation numbers from Boltzmann distribution + Saha equation • S  B • NLTE • occupation numbers ni in stationary equilibrium

  8. Equation System mean intensity frequency points  0 equations + NF equations = NF statistical equations NLTE levels (NL levels) = NL hydrostatic equilibrium 1 particle conservation 1 radiative equilibrium 1 NF + NL + 3 equations

  9. Classical Models NF = 65 NL = 18  86 equations numerical accuracy! (32 bit computers …) • before 1986! levels line transitions ion NLTE LTE RBB H I 5 11 6 H II 1 He I 5 11 0 He II 6 16 0 He III 1 18 48 6

  10.  Iteration  good for

  11. Approximate * Operator iteration step i: convergence: advantage: local operator!  reduction of equation system! - transfer equations - rate equations

  12. Accelerated Lambda Iteration • “Classical” models • 1969 H models, complete linearization • Auer & Mihalas 1969, ApJ 156, 157 • 1972 H+He models (Auer & Mihalas) • 1972 H+He + average light element (Mihalas) • “Beyond classical” models • 1986 H+He+C, ALI method (Werner) • 1990 H - Fe, multi-frequency/multi gray (Anderson) • 1991 H+He+C+N+O+Si (Werner, Dreizler, Rauch) • 1993 impact of iron-group elements (Hubeny & Lanz)

  13. Model Atoms • levels treated in NLTE energies ? • levels treated in LTE energies ? • radiative + collisional transistions • RBB/CBB oscillator strengths ? • RBF/CBF ionization cross sections ? • RFF cross sections ? • line broadening ?

  14. NLTE Model Atmospheres C IV doublet “optical” RBB 5  6, 6  8 C III singlet + triplet all stars with spectral type B or earlier regarded as a domain of specialists high computational times atomic data

  15. More Model Ions … Fe VII simplified Hauschildt diagram

  16. PG 1159-035 Heber & Hunger 1991, German Research, Reports of the DFG 1st appropriate NLTE models available!

  17. Beyond Classical Models • 1986 H+He+C, ALI method (Werner) • 1990 H - Fe, multi-frequency/multi gray (Anderson) • 1991 H+He+C+N+O+Si (Werner, Dreizler, Rauch) • 1993 impact of iron-group elements (Hubeny & Lanz) • 1993 iron-group elements (Dreizler & Werner) • 1997“light-metal” (H-Ca) models (Rauch) • 2003 H-Ni models (Rauch) • “fully metal-line blanketed” • LTE: Kurucz 1979

  18. TMAP • Tübingen Model-Atmosphere Package • http://astro.uni-tuebingen.de/~rauch/TMAP/TMAP.html • Werner et al., 2003, ASPC, 288, 31 • Rauch & Deetjen, 2003, ASPC, 288, 103 • NLTE • plane-parallel or spherical • homogeneous • hydrostatic equilibrium, diffusion • radiative equilibrium

  19. Fluorine • First discovery of fluorine in hot post-AGB stars: • F VI1139.50 Å • 14N(α,)18F(β+)18O(p,α)15N(α,)19F • F abundance in PG 1159 stars up to 200  solar • Werner, Rauch & Kruk 2005 • F intershell abundance in evolutionary models is right • Lugaro et al. 2004

  20. Neon  Ne VII 3644Å first identified 1994(Werner & Rauch) Iben & Tutukov 1985, ApJS, 58, 661 • 14N(α,n)18F(β+)18O(α,γ)22Ne • intershell abundance of 2% by mass (11  solar) expected

  21. FUSE: Ne VII Ne VII 973.3Å, one of strongest lines in FUSE spectra first identified 2004 (Werner et al.) Herald, Bianchi, & Hillier, 2005 Ne VII973Å – the assumed C III 977Å P Cygni feature

  22. VLT: Ne VII Newly discovered Ne VII multiplet in VLT spectra (Werner et al. 2004) Improvement of atomic data of highly excited Ne VII lines  NIST (Kramida et al. 2006)

  23. Ne VIII new data by Kramida & Buchet-Poulizac 2006 precise determination of Teff in hottest stars, here DO KPD0005+5106 before: Teff = 120 000 K now: Teff = 200 000 K

  24. Iron FUSE spectral range covers strongest Fe VII lines. Up to now, FUSE spectra from four PG1159 stars (K 1-16, PG 1159-035, NGC 7094, A 78) with sufficiently high S/N analyzed. What is expected? reduced (sub-solar) intershell Fe abundance, by n-captures - Reduced to what extent?

  25. Iron-Deficiency in LTP Stars • CSPN Abell 78 • Teff = 110 000 K • log g = 5.5 (cm/sec2) • Fe abundance variation • 1/10 and 1/100 solar • no iron lines detectable in FUSE spectra of all four examined PG1159 stars: • Fe deficiency of 1-2 dex • very strong Fe depletion in intershell • Miksa et al. 2002, Jahn et al. 2007

  26. S-Process: Fe-Depletion test by Herwig et al. 1999 just qualitative

  27. Trans-Iron Elements • CSPN NGC 7094 • Teff = 110 000 K • log g = 5.7 (cm/sec2) • [Fe] = -1.6 • [Ni] = 0 • AFTP star • H = 0.36 (by mass) • He = 0.43 • C = 0.21 • Fe/H ratio should be solar = 1.6 ·10-3 (by mass) • NGC 7094: 3.9 ·10-5 Ziegler et al. 2009, A&A, in prep.

  28. Spectroscopy of PG1159 Stars • He, C, N, O, Ne, Mg, F, Si, Ar are in line with predictions from evolutionary models • Fe depletion is surprisingly large (up to 2 dex sub-solar) • Ni is not overabundant • P is roughly solar, but models predict strong enhancement • S is expected to stay solar, but large depletions (up to 2 dex) • for a review, see Werner & Herwig 2006, PASP, 118, 183

  29. Spectroscopy of LS V +46°21 • exciting star of Sh 2-216 • closest PN known, d = 130pc • apparent diameter 1.6° • LS V +46°21 about 0.2 radii off centre • mild interaction with ISM • thin disk orbit of low inclination and eccentricity • Kerber et al. 2004 • FUSE: 67.6 ksec in 2003/2004, R 0.05 Å • STIS: 5.5 ksec in 2000, R 0.06 Å Hα + [O III] Dean Salman www.deansalman.com

  30. Spectroscopy of LS V +46°21 • HHeCNOFMgSiPSAr + CaScTiVCrMnFeCoNi • IrOnIc • Rauch & Deetjen 2003 • 686 NLTE levels • 2417 individual lines • 9 million iron-group lines • Kurucz 1996 • Rauch et al. 2007, A&A, 470, 317 Teff= 95 000 K log g = 6.9

  31. LS V +46°21 Photospheric abundances exhibit interplay of gravitational settling and radiative levitation Photospheric abundances in agreement with diffusion predictions (Chayer et al. 1995)

  32. FUSE spectrum of PG1159-035 and model fit incl. ISM model Jahn et al. 2007, A&A, 462, 281

  33. H1504+65 Teff = 200 000 K log g = 8

  34. Magnesium in H 1504+65

  35. H 1504+65: CHANDRA Spectrum Werner et al. 2004

  36. H 1504+65: Iron group

  37. KPD 0005+5106 Teff = 200 000 K instead of Teff = 120 000 K

  38. Nova V 4743 Sgr • outburst Sep 20, 2002, mV = 5 • Mar 2003: brightest super-soft source in the sky • CHANDRA spectrum • C V, C VI, N VI, N VII, O VII absorptions • Teff 1 – 2 MK (Ness et al. 2003) • XMM-RGS spectrum (Apr 4, 2003) • Teff 610 kK (Rauch, Werner & Orio 2005)

  39. SEDs for Extremely Hot Stars

  40. V 4743 Sgr

  41. Teff Determination: N VI / N VII IonizationEquilibrium

  42. Effective Temperature of Nova V 4743 Sgr after Burst

  43. EXO 0748-676 (LMXB) • discovery of gravitationally redshifted photosphericabsorption lines of Fe XXV, Fe XXVI, O VIII in burst spectra • Cottam, Paerels & Mendez 2002 • letter to NATURE, 420, p. 51

  44. no fit at z = 0.35

  45. much better fit at z = 0.24 ?

More Related