1 / 33

Recent progress on VLBI study of the jets in Narrow - line Seyfert 1 galaxies

Recent progress on VLBI study of the jets in Narrow - line Seyfert 1 galaxies. Minfeng Gu (SHAO) Collaborators: Zhiqiang Shen , Yongjun Chen (SHAO); Weimin Yuan (NAOC) ; S . Komossa , J. A. Zensus ( MPIfR ); Hongyan Zhou (USTC); K. Wajima (KASI ) ; 2017-12-04

nadriana
Download Presentation

Recent progress on VLBI study of the jets in Narrow - line Seyfert 1 galaxies

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RecentprogressonVLBIstudyofthejetsinNarrow-lineSeyfert1galaxiesRecentprogressonVLBIstudyofthejetsinNarrow-lineSeyfert1galaxies Minfeng Gu (SHAO) Collaborators: ZhiqiangShen, Yongjun Chen (SHAO); Weimin Yuan (NAOC);S. Komossa, J.A. Zensus (MPIfR); Hongyan Zhou (USTC); K. Wajima (KASI); 2017-12-04 East-AsiaAGNWorkshop2017 Kagoshima,Japan

  2. Outline • Introduction radio-loudAGNs narrow-lineSeyfert1galaxies(NLS1s) • Theradio structure of radio-loud NLS1s progress VLBAobservations comparisonwithotherAGNs scenarios • Ongoingandfuturework • Summary

  3. AGN structure and radio-loud • Radio loudness: R>10 radio-loud; <1 radio-quiet; 1<R<10 radio intermediate (Kellermann et al. 1994) • Radio luminosity: (Miller et al. 1990) only 10%–20% were qualified as radio-loud objects in optically selected samples (e.g., Kellermann et al. 1989; Hooper et al. 1995). Urry & Padovani (1995)

  4. Narrow Line Seyfert 1 galaxies (NLS1s) • Balmer lines broader than forbidden lines but narrower than normal type 1 AGNs (FWHM < 2000km/s) • Peculiar properties: softer X-ray spectra, fast X-ray variability, strong optical Fe IIs • Relatively small black hole mass 106-8 M(e.g. Collin & Kawaguchi 2004), however still controversial: viewing angle, radiation pressure … • High accretion rate Lbol >> 0.1 LEdd (up to Lbol/Ledd ~ 1) • Accretion possible via slim disk (e.g. Abramowicz et al. 1988; Mineshige et al. 2000) Boroson (2002)

  5. Radio-loud NLS1s (RLNLS1s) • NLS1s were long thought to be radio-quiet. Radio-loud NLS1s are rare, but they do exist (Siebert et al 1999 ; Grupe et al. 2000; Zhou & Wang 2002; Zhou et al. 2003; Whalen et al. 2006; Komossa et al. 2006; Yuan et al. 2008). • RL NLS1s sample from SDSS: >100 out of ~2000 NLS1s (Zhou et al. 2006) – RL (R>10) fraction = 7%; very radio-loud (R>100) NLS1s: very rare – 23 from SDSS DR5 (Yuan et al. 2008). • Outof11101 NLS1s:555detectionsinFIRST(5%),378radio-loud(3.4%)(Rakshitetal.2017) • Komossa et al. (2006): the radio loud NLS1 galaxies are generally compact, steep spectrum sources. • Several of the radio loudest NLS1 galaxies displayblazar characteristics and harbor relativistic jets (Doi et al. 2007; Zhou et al. 2007; Yuan et al. 2008) • Flat radio spectra, large-amplitude flux and spectral variability, compact radio cores, very high variability brightness temperatures, enhanced optical continuum emission, flat X-ray spectra, and blazar-like SEDs.

  6. Compact at arcsec scale • Arcsecond-resolution observations have resolved the structures of only a few NLS1s because they are generally quite compact (e.g. Ulvestad et al. 1995, Moran et al. 2000, Stepanian et al. 2003, Doi et al. 2012). • Kpc-scalestructurehasbeedetectedinonlyelevenNLS1s(Doi+12,Richards&Lister2015,Mrk783-relic,Congiuetal.2017)

  7. Host galaxies • Almost all the low redshift NLS1s are hosted by spiral galaxies (Crenshaw et al. 2003, Deo et al. 2006)

  8. Host galaxies of RLNLS1s:unclear • 1H0323+342:HSTandNOTimages–one-armedgalaxymorphologyoracircumnuclearring–thespiralarmofthehostgalaxyortheresidualofagalaxymerger(Zhouetal.2007,Antonetal.2008,LeonTavaresetal.2014) • A bulge-disk-bar(pseudobulge) morphology in PKS 2004-447 (Kotilainen et al. 2016) • A barred lenticular galaxy (SB0), pseudobulge in FBQS J1644+2619 (Olguin-Iglesias et al. 2017) • SDSSimages Zhou et al. (2007), Foschini (2011)

  9. RLNLS1sinoverallAGNs • Relativelysmaller MBH,and larger accretion rate. • Two sequences on R - Eddington ratio plane (Sikora et al. 2007).

  10. Jetformation • Jets in BHBs and AGNs:similar? • Jet-production related parameters: black hole mass, spin, host galaxy, accretion rate, environments … Fender et al. (2004) Yuan & Narayan (2014)

  11. Progress of VLBI studies • Fiveradio-loud NLS1s: RXS J16290+4007, RXS J16333+4718, and B3 1702+457 (VLBA Gu & Chen 2010, Doi et al. 2011, JVN Doi et al. 2007), RX J0806.6+7248 (JVN Doi et al. 2007, VLBA Doi et al. 2011), B2 1111+32 (EVN, VLBA Chen & Gu in prep.). • Sixgamma-ray NLS1s: compact at kpc scale, but resolved at pc scale (SBS 0846+513, PKS 1502+036 and PKS 2004-447, VLBA D’Ammando et al. 2012, Orienti et al. 2012,2015); SDSS J094857.31+002225.4 (VLBA Doi et al. 2006, Foschini et al. 2011, global e-VLBI Giroletti et al. 2011), 1H 0323+342 (VLBA Zhou et al. 2007), FBQS J1644+2619 (JVN Doi et al. 2007, VLBA Doi et al. 2011). • In total, only about 11 RLNLS1s(outof117) have published VLBI images. • Fourteen RLNLS1swithFIRST1.4GHzflux>10mJy(VLBA, Gu et al. 2015),includingtwogamma-raysources:SDSSJ1443+4725,SDSSJ1305+5116(Liaoetal.2015,2017tobesubmitted),andSDSSJ1246+0238(D’Ammando et al.2016) • NineteenRLNLS1swith FIRST 1.4GHzflux density >=3.5 mJy(VLBA,Guetal.tobesubmitted) • Onegamma-raysource:SDSSJ1222+0413(Yaoetal.2015,MOJAVE) • VERA observations of 12 NLS1s at 22 GHz (Doi et al. 2016)

  12. Early studies • Theexistenceofrelativisticjets(e.g.highbrightnesstemperature),either intrinsicallyradioloud(e.g.steep-spectrumsources),orapparentlyradioloudduetojetbeamingeffect(e.g.flat-spectrum,highbrightnesstemperature)(Doietal.2007; Gu & Chen 2010; Doi et al. 2011) gamma-raydetection (D’Ammando+16)

  13. Gamma-ray RLNLS1s • Core-jet structure,highbrightnesstemperature,superluminalorsubluminalmotions,flatspectrum(D’Ammando+16,Lister+16,Schulz+16) • Basedonthesuperluminalmotion,atleastsomesourceshaveLorentzfactorsinexcessof10,andviewingangleslessthan10degree(Lister+16) • However,seeSDSSJ1443+4725,J1305+5116andJ1246+0238inoursample

  14. PMN J0948+0022 • A bright and compact component with an inverted spectrum, and a faint jet feature. • Beaming effect indicated from the variable emission and high brightness temperature. • First Fermi-detected NLS1s - third class of gamma-ray AGNs. • Superluminalmotion:11.5c(MOJAVE,Lister+16) 15 GHz VLBA (Foschini et al. 2011) 22 GHz global e-VLBI (Giroletti et al. 2011)

  15. SBS 0846+513(z=0.5835): (D’Ammando et al. 2013) • Strong γ -ray flares; an apparent superluminal velocity of (5.84± 0.88)c (MOJAVE,Lister+16). • Blazar-like; at the low end of the blazar’s black hole mass distribution.

  16. PKS 1502+036 • High frequency peakers (HFPs) selected by Dallacasa et al. (2000), but rejected due to the variability (Orienti et al. 2008). • Apparentspeed:1.14c(MOJAVE,Lister+16)

  17. PKS 2004-447 • Compact steep spectrum source: a steep spectrum at high frequency (above 8.4 GHz), the absence of significant flux density variability, and unresolved atarcsecond-resolution (e.g. ATCA) (Gallo et al. 2006). • Included in the CRATES catalog of flat spectrum objects (Healey et al. 2007) due to its flatter spectrum below 4.8 GHz. • 1.5 GHz VLBA image8.4GHzTANAMIimage(Schulz+16) (Orienti et al. 2012).

  18. 1H 0323+342: hosted in a spiral galaxy?core + weak extended (MOJAVE source, 1.2 pc/mas) (propermotion:9.02c,MOJAVE,Listeretal.2016) Zhou et al. (2007), Foschini (2011)

  19. SDSSJ1222+0413 • Atthehighestredshift(z=0.966,Yao+15) • Apparentspeed:0.94c(MOJAVE,Listeretal.2016)

  20. Results of ourVLBA observations(Gu et al.2015,ApJS, 221, 3,Guetal.2016,AN,Gu2017,IAUS) • Thelargestsampleof117RLNLS1s(R>10)hasbeenconstructedby combining various samples available so far, which are mostly from our own work. • Fourteen RLNLS1swithFIRST1.4GHzflux>10mJywere observed with a total of 15 hours at 5 GHz using VLBA on Oct. and Nov., 2013. • Theadditional 19 RLNLS1s with FIRST flux density >=3.5 mJyhavebeenobservedwithVLBAinatotalof 24 hoursinNov.andDec. 2014, yielding the biggestVLBI sample of 33 sources. • Thisisthe firstandlargest systematic high resolution radio study of RLNLS1s. • Thejetphysics:thejetformationintheseaccretionsystems. • Theaccretion–jetrelation:earlystagesinbothactivities? • Feedback:jet–cloudinteractions?

  21. Sample

  22. Morphology • Generally compact: seven sources show compact core only, and other seven objects have core-jet structure. Coreonly

  23. Core-jet

  24. Radiospectra • Fromthe multi-bandradio data, seven sources show flat or even inverted spectra, while steep spectra are found in restobjects. Steepradiospectrum–resembletoCompactSteepSpectrumsources Flatradiospectrum–blazarlike (seealsoOrientietal.2015forVLBAimages)

  25. Polarization • Thehigher fractional polarization in jets:the strong Faraday rotation in nuclei region due to the highplasma density, and/or depolarization due to the complex core structure. • Fractional polarization variations in the jet:the jet-ISM interactionat the locations of high fractional polarization due to the jet bulk motion

  26. Gamma-ray sources • 1)SDSSJ1246+0238:flat-spectrum, • coreonly,logTb=9.7(K), • TS=79, Γ=2.59±0.09(D’Ammando et al.2016) • 2)SDSSJ1443+4725:logTb=10.3(K),thefirstRLNLS1withgamma-rayemissionathighsignificancefromFermi/LATandwithradiopropertiessimilartocompactsteep-spectrumsources(TS~70,Liao+15,+17).

  27. 3)SDSSJ1305+5116:steepspectrum(151MHz–4.85GHz),andcompact(<10kpcfromFIRSTimage)3)SDSSJ1305+5116:steepspectrum(151MHz–4.85GHz),andcompact(<10kpcfromFIRSTimage) • Core-jetstructure:corelogTb~10.8K;TS~28.5

  28. Brightnesstemperature • The core brightness temperature ranges from 108.4to 1011.7K with a median value of 1010.1K,indicatingthatthe beaming effect is generally not significant. • Typicalblazars have 1011 - 1013 K with a medianvalue near 1012K (Kovalev et al. 2005, 2009). • Thebulk jetspeed may likely be low in our sources(seealsoAngelakiset al. 2015,Richards & Lister 2015). • The Lorentz factors obtained for 1H 0323+342 and SBS 0846+513 are at the lower end of the blazar Lorentz factor distribution(Fuhrmann+16) Kovalevetal.2009

  29. ComparisonstotypicalCSSs:VLBImorphology • Mosthigh-powerCSSsshowdoubleortriplemorphologies(O’Dea1998,Dallacasaetal.2013)

  30. Core and core-jet in low-power CSSs • Thecompactcoreonly,orcore-jetstructurehavebeendetectedinrelativelylow-powerCSSsources(Kunert-Bajraszewska et al. 2006; Kunert-Bajraszewska & Marecki 2007)

  31. Evolution • Oursources occupy thespace below the main evolutionary path of radio objects(An&Baan2012). • However,thedifferenceisthatoursourceshavesmallblackholemassandhighaccretionrate.

  32. Scenario: lowjetspeed • a)The outflows/jets accelerated from the hot corona above the disk by the magnetic field and radiation force, with high mass loss rate but low speed (Cao 2014). • TheMBH - Γcorrelation:the faster moving jets are magneticallyaccelerated by the magnetic fields threading the horizon of more rapidly rotating black holes(Chai,Cao&Gu 2012). • b)The low jet speed could bedue to the low spin,supported by low/intermediate average spins (a < 0.84) from compositebroad Fe K line (Liu et al.2015).

  33. Summary • Powerful jets may present in systems with small MBH and high accretion rate, e.g. NLS1s. • The jet propertiesofradio-loudNLS1s are diverse on mas scale, interms of themorphology and spectral shape. • The jet speed in these sources is likely low, which is due toeither thejetaccelerationbythemagneticfieldandradiationforce,orlowspininBZmechanism. • The slow jet speed ormildly relativistic jet, in combination with the low kinetic/radio power, couldbe responsible for the compact VLBA radio structure in most sources. • Thegamma-rayemissionhasbeendetectedin both flat- and steep-spectrumNLS1s. Thanksforyourattention!

More Related