1 / 18

Observation of TeV Gamma Rays with the Tibet Air Shower Array and Future Prospects

Observation of TeV Gamma Rays with the Tibet Air Shower Array and Future Prospects. ICRR, University of Tokyo Kazumasa Kawata For the Tibet AS g Collaboration. The Tibet AS g Collaboration.

murray
Download Presentation

Observation of TeV Gamma Rays with the Tibet Air Shower Array and Future Prospects

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Observation of TeV Gamma Rayswith the Tibet Air Shower Arrayand Future Prospects ICRR, University of Tokyo Kazumasa Kawata For the TibetASgCollaboration

  2. The Tibet ASg Collaboration M.Amenomori(1), X.J.Bi(2), D.Chen(3), S.W.Cui(4), Danzengluobu(5), L.K.Ding(2), X.H.Ding(5), C.Fan(6), C.F.Feng(6), Zhaoyang Feng(2), Z.Y.Feng(7), X.Y.Gao(8), Q.X.Geng(8), H.W.Guo(5), H.H.He(2), M.He(6), K.Hibino(9), N.Hotta(10), Haibing Hu(5), H.B.Hu(2), J.Huang(2,3), Q.Huang(7), H.Y.Jia(7), F.Kajino(11), K.Kasahara(12), Y.Katayose(13), C.Kato(14), K.Kawata(3), Labaciren(5), G.M.Le(15), A.F.Li(6), J.Y.Li(6), Y.-Q.Lou(16), H.Lu(2), S.L.Lu(2), X.R.Meng(5), K.Mizutani(12,17), J.Mu(8), K.Munakata(14), A.Nagai(18), H.Nanjo(1), M.Nishizawa(19), M.Ohnishi(3), I.Ohta(20), T.Ouchi(9), S.Ozawa(12), J.R.Ren(2), T.Saito(21), T.Y.Saito(22), M.Sakata(11), T.K.Sako(3), M.Shibata(13), A.Shiomi(23), T.Shirai(9), H.Sugimoto(24), M.Takita(3), Y.H.Tan(2), N.Tateyama(9), S.Torii(12), H.Tsuchiya(25), S.Udo(12), B.Wang(2), H.Wang(2), X.Wang(3), Y.Wang(2), Y.G.Wang(6), H.R.Wu(2), L.Xue(6), Y.Yamamoto(11), C.T.Yan(3), X.C.Yang(8), S.Yasue(26), Z.H.Ye(15), G.C.Yu(7), A.F.Yuan(5), T.Yuda(9), H.M.Zhang(2), J.L.Zhang(2), N.J.Zhang(6), X.Y.Zhang(6), Y.Zhang(2), YiZhang(2), Zhaxisangzhu(5) and X.X.Zhou(7) (1) Dep. of Phys., Hirosaki Univ., Hirosaki, Japan (2) Key Lab. of Particle Astrophys., IHEP, CAS, Beijing, China (3) ICRR., Univ. of Tokyo, Kashiwa, Japan (4) Dep. of Phys., Hebei Normal Univ., Shijiazhuang, China (5) Dep. of Math. and Phys., Tibet Univ., Lhasa, China (6) Dep. of Phys., Shandong Univ., Jinan, China (7) Inst. of Modern Phys., South West Jiaotong Univ., Chengdu, China (8) Dep. of Phys., Yunnan Univ., Kunming, China (9) Fac. of Eng., Kanagawa Univ, Yokohama, Japan (10) Fac. f of Educ., Utsunomiya Univ., Utsunomiya, Japan (11) Dep of Phys., Konan Univ., Kobe, Japan (12) Advanced Research Inst. for Sci. and Engin., Waseda Univ., Tokyo, Japan (13) Fac. of Eng., Yokohama National Univ., Yokohama , Japan (14) Dep. of Phys., Shinshu Univ., Matsumoto, Japan (15) Center of Space Sci. and Application Research, CAS, Beijing, China (16) Phys. Dep. and Tsinghua Center for Astrophys., Tsinghua Univ., Beijing, China (17) Dep. of Phys., Saitama Univ., Saitama, Japan (18) Advanced Media Network Center, Utsunomiya University, Utsunomiya, Japan (19) National Inst. of Info., Tokyo, Japan (20) Sakushin Gakuin University, Utsunomiya, Japan (21) Tokyo Metropolitan College of Industrial Tech., Tokyo, Japan (22) Max-Planck-Institut fuer Physik, Muenchen, Germany (23) College of Industrial Technology, Nihon University, Narashino, Japan (24) Shonan Inst. of Tech., Fujisawa, Japan (25) RIKEN, Wako 351-0198, Japan (26) School of General Educ.,Shinshu Univ., Matsumoto, Japan

  3. Tibet-III Air Shower (AS) Array 4,300 m a.s.l. (606 g/cm2) • Number of Scinti. Det. 0.5 m2 x 789 • Effective Area for AS ~37,000 m2 • Energy region ~TeV - 100 PeV • Angular Resolution ~0.4 @10 TeV (Gamma rays) ~0.2 @100 TeV • Energy Resolution ~70% @10 TeV (Gamma rays) ~40% @100TeV • F.O.V. ~2 sr

  4. + Cosmic Ray Energy Calib. by the Moon’ Shadow • Verification • Absolute energy scale • Angular resolution • Pointing error Energy dependence of Displacements Caused by Geomagnetic field Constant fitting -0.0034o 0.011o Systematic pointing error < 0.01o Absolute Energy Scale error –4.4% +- 7.9%stat +- 8%sys

  5. Energy Spectrum of the Crab Nebula ICRC2007, Mexico Submitted to ApJ Centered at Crab position 90%CL

  6. Cosmic-ray/Gamma-ray anisotropy Amenomori et al, Science, 314, 439 (2006) Anisotropy map Cygnus region Tail-In Loss-Cone 360 0 R.A. (deg) MGRO J2031+41 (900 mCrabs @ 20TeV) Cygnus region 0.9 deg. radius Window size: 5 deg. radius MGRO J2019+37 (800 mCrabs @ 20TeV) A.A.Abdo et al., ApJ, 664 L91 (2007)

  7. Future Plan Tibet muon detector (MD) project & Prototype MD in Tibet

  8. Present Status of the TeV g Ray Astronomy Number of muons in air showers (<100m from shower core, 4300m a.s.l.) 100TeV gamma ~1 100TeV proton ~50 90%CL MAGIC Improve sensitivity to gamma rays in 100 TeV region (10 – 1000 TeV) VERITAS HESS McKay et al, ApJ, 417, 742 (1993) Antoni et al, ApJ, 608, 865 (2004) Atkins et al, ApJ, 608, 680 (2004) Amenomori et al, ApJ, 633, 1005 (2005)

  9. Tibet Muon Detector (MD) Array • 7.2m x7.2m x 1.5m depthWater cell • 20”FPMT x 2(HAMAMATSU R3600) • Underground 2.5m ( ~515g/cm2~19X0) • Material: • Concrete pool • White paint • 192 detctors • Total~10,000 m2 MD ~10,000m2 extends AS to ~83,000m2 We will count the number of muons by an air shower trigger Full Monte Carlo Simulation

  10. Muon Number vs. Shower Size (Simulation) 80% 50% 20% SNPE( Muon Number) SNPE( Muon Number) SNPE( Muon Number) µ µ µ Sr:Sum of particle density by all scintillation det. >> Shower Size SNPE:Sum of photoelectrons by all muon det. >> Muon number (Threshold of MD NPE >10 p.e.) CR (~10TeV) (gamma) Gamma 10TeV 100TeV 1000TeV 99.8% Rejection CR 0 (~100TeV) CR Gamma Gamma ~99.99% Rejection 0 0 Sr ( Shower Size)

  11. Future Sensitivity (5s or 10 events)

  12. Prototype Muon Detector in Tibet 52m2x 2 • Construction starts from Sep. 2007 • Data taking starts from Dec. 2007 • Construction feasibility in Tibet • Development of MC simulation • g observation above several 100 TeV

  13. September, 2007 – Start construction Cement Concrete mixer 13 On Sep. 1st, start construction Sep. 4th - finish almost digging

  14. September ~ October Sep. 13th - finish substructure Oct. 5th – Steel bars, forms 14 Oct. 15th – concrete works Oct 20th – remove forms

  15. 16 November, 2007Prototype Muon Detector

  16. Prototype Muon Detector after covering

  17. Inside of the MD Clear underground water from a nearby well 20”f PMT x 3: (Normal gain x 2, 1/100 gain x 1 for test) Water depth : 1.5 m White paint Pouring very clear well-water Filled up water 1.5 m in depth

  18. Summary Tibet MD Project ~83,000 m2 Air Shower array + ~10,000 m2Water Cerenkov Muon Detector array (~7M US$) Gamma-ray astrophysics in the 100 TeV region (10 – 1000 TeV) – Diffuse and point-like sources – Study on the maximum energy of gamma rays – Origin and acceleration limit of cosmic rays (p0 decay/IC) Sensitivity (based on detailed simulation) – BG rejection power 99.8% rejected (50% gamma-ray events retained) @ 10 TeV 99.99% rejected (83% gamma-ray events retained) @ 100 TeV – Improve by an order of magnitude compared with the present Tibet AS array >~10 TeV Surpass existing IACTs >~40 TeVSurpass future plans of IACTs Prototype MD (52 m2 x 2 cells) – successfully completed – data taking started in Dec. 2007 – in good agreement with MC simulation

More Related