Cluster sampling
This presentation is the property of its rightful owner.
Sponsored Links
1 / 27

CLUSTER SAMPLING PowerPoint PPT Presentation


  • 95 Views
  • Uploaded on
  • Presentation posted in: General

PERTEMUAN 3-MPC 2 TEORI. CLUSTER SAMPLING. Oleh : J. Purwanto Ruslam. SEKOLAH TINGGI ILMU STATISTIK. PENGANTAR. Jika jumlah elemen /unit yang menjadi populasi survei sangat besar maka sampling elemen akan sulit diterapkan .

Download Presentation

CLUSTER SAMPLING

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Cluster sampling

PERTEMUAN 3-MPC 2 TEORI

CLUSTER SAMPLING

Oleh: J. PurwantoRuslam

SEKOLAH TINGGI ILMU STATISTIK


Pengantar

PENGANTAR

  • Jikajumlahelemen/unit yang menjadipopulasisurveisangatbesarmaka sampling elemenakansulitditerapkan.

  • Haliinidisebabkanolehsulitnyamenyediakankerangkasampel (frame) sampai unit/elemen.

  • Selainitu, penarikansampelsecaraelemen sampling akaninefisiensidaripenggunaansumberdayasurvei (waktu, biaya, tenaga) jikacakupansurveisangatluas.


Pengantar1

PENGANTAR

  • Misalkan, tahunkitainginmelakukansuatusurveirumahtangga di untukestimasi level provinsi.

  • Jikainginmelakukansampelsecaraelemen sampling persyaratannyaadalahkitaharusmempunyaiDaftarseluruhrumahtangga di provinsitsb yang lengkapdanup to date, yaitudarirumahtangga ke-1 sampairumahtanggake-N.

  • Hal inisulitdipenuhikarenapembentukanframemembutuhkanbiaya, waktu, dantenaga yang besar.

  • Selainitu, sifatrumahtangga yang mempunyaikecenderunganuntukpindahdaritempat yang satuketempat yang lain akanmenyebabkanpersyaratanuntuktersedianyaframe yang up to date tidakterpenuhi.

  • Sekalipunframe rumahtanggatersedia, penarikansampelsecaraelemen sampling akanmenyebabkansampelmenyebar di seluruhwilayahcakupansurveisehinggaoperasionallapanganakansangatsulitdanmahal.


Pengertian

PENGERTIAN

  • Suatupopulasi yang terdiridari M elemen-dikelompokanmenjadiNkelompok (cluster-gerombol) yang selanjutnyamembentuksuatu Frame:

    { U } = { U1, U2, … Ui… UN}

    { Ui} = { ei1, ei2, … eij… UiM}

    2. KaidahasosiasiantaraU(nit) danE(lemen) adalah“One-to-Many”


Cluster

Cluster:

  • Compact cluster, adalah cluster yang dibentukolehelemen-elemen yang salingberdekatan (contiguous).

    Contoh:

    • R(ukun) T(etangga) dgnelemenrumahtanggaataupenduduk,

    • Blok Sensusdgnelemenrumahtanggaataupenduduk,

    • Kelasdgnelemenmurid/siswa

  • Non-compact cluster, adalah cluster yang dibentukolehelemen-elemen yang non-contiguous


Klaster unit listing elemen unit analisis dan aplikasi

Klaster, Unit Listing, Elemen/Unit Analisis, danAplikasi


Cluster1

Cluster:

Ditinjaudarijumlah unit/elemendalamtiap cluster:

  • Clusteryang jumlahelemen yang membentukclustersama, selanjutnyadisebutclusters of equal size.

    • Bungkusrokok

    • Plot tanamanuntukpercobaan

  • Cluster yang jumlahelemen yang membentukclustertidaksama, selanjutnyadisebutclusters of unequal size


Single stage vs multi stage

Single stage vs Multi stage

  • Ada duacarauntukmenentukan unit yang diteliti:

    1. Semuaunit yang adadalamklasterterpilihdimasukkansebagaianggotasampeldaninformasinyadikumpulkan. Dalamsampling, penarikansampelinitermasukmetode sampling klastersatutahap (single stage/ one stage cluster sampling).

    2. Sebagianunit yang adadalamklasterterpilih, dipilihdalamsampeldanhanyadari unit terpilihinformasidikumpulkan. Penarikansampelinitermasukmetode sampling klasterbertahap (multi stage cluster sampling).


Alasan penerapan cluster sampling

Alasanpenerapan cluster sampling

  • Pengumpulandata pada unit yang berdekatanlebihmudah, murah, cepat, danoperasilapanganlebihmemungkinkandibandingkanbila unit menyebarkeseluruhwilayah.

  • Biayatransporantar unit sampelmahaldantidaksebandingdenganbiayapenelitian per unit sampel.

  • Biladihadapkanpadakesulitanpenyediaankerangkasampel yang memuatseluruh unit sampeldalampopulasisecaralengkapdanmutahir. Biayauntukpembuatankerangkasampelinisangatmahal.


Kerugian penerapan cluster sampling

Kerugianpenerapan cluster sampling

  • Padaumumnyatidaklebihefisiendaripadaelemen sampling (variansnyacenderunglebihbesar)

  • Tidakbisadigunakanuntukmengestimasipadalevel cluster (bandingkan dg strata)


Populasi dan parameter

Populasidan Parameter

  • Equal Cluster Size

    • Misalkansuatupopulasi {O} dikelompokanmenjadiN cluster yang membentuksuatu Frame:

      { U } = { U1, U2, … Ui… UN}

    • Cluster ke-i (i : 1, 2, ….N) memuat M elemen (j : 1, 2, ….M)

    • yijmenyatakannilaikaraktristikYpadaelemenke-jdalam cluster ke-i

    • NilaiYdapatditatadalamcatatanmatrikssbb:


Matriks nilai y ij

Matriksnilaiyij


Populasi dan parameter1

Populasidan Parameter

  • Rataan per-elemendalam cluster

  • Rataan umum per cluster

  • Rataanumum per-elemen

  • Varianspopulasi


Dekomposisi varians populasi

DekomposisiVariansPopulasi


Cluster sampling

Maka:


Estimasi

Estimasi

  • MisalkansuatupopulasiterdiriatasN cluster, danmasing-masing cluster berukuransamayaituMelemen. Satugugussampel yang berukurann cluster ditarikdariN cluster secara SRSWOR/sistematik linear. Seluruhelemendidalam cluster terpilihditeliti.

  • Misalkanyij (j:1,2,3,…, M; i: 1,2,3,4,…,n) menyatakannilaikharakteristikypadaelemenke-jdalam cluster terpilihke-i.

N Populasi

SRSWOR/Sistematik

n sampel


Cluster sampling

  • Estimasitotal bagikarakteristik Y

  • Estimasivariansbagi total Y

    dengan:


Cluster sampling

  • Rumus estimasivariansbagi total Y dapatdijabarkan:

    Keterangan:


Estimasi rata rata

Estimasi rata-rata

  • Estimasi rata-rata per-cluster

    • Estimasivarians

  • Estimasi rata2 per-elemen (lebihmenarikdaripada rata2 per-cluster)

    • Estimasivarians


Cluster sampling

  • Estimasi standard error= akarestimasivarians

  • EstimasiConfidence interval (1-α) 100% bagi rata2 yang sebenarnyaadalah


Contoh soal

ContohSoal

  • Seorang manager sirkulasisuratkabaringinmengetahui rata2banyaknyasuratkabar yang dibeliolehrumahtangga di suatukomunitas. Dalamkomunitastersebutterdapat 400 rumahtangga yang terdaftar 40 geographical cluster ygsetiap cluster-nyamemuat 10 ruta. Satugugussampel yang berukuran 4 cluster ditariksecara SRSWOR, dansemuarumahtanggadalam cluster terpilihdiwawancarai, danhasilnyasepertitercantumpadaTabel 1. Berapaestimasi rata2banyaknyasuratkabar yang dibeliolehrumahtanggaberikutstandard error danrelative standar error-nya !


Ilustrasi

Ilustrasi

Keterangan:

: rumahtangga

Clusterterpilihsampel

Clustertidakterpilihsampel


Tabel 1 jumlah surat kabar yang dibeli oleh ruta menurut cluster

Tabel 1: Jumlahsuratkabar yang dibeliolehrutamenurut cluster


Penyelesaian

Penyelesaian:

  • Rata-rata banyaknyakoran yang dibelitiaprumahtangga:

  • Sampling varians:


Terima kasih

TERIMA KASIH

Have A Nice Sampling


  • Login