1 / 9

MIKROELEKTRONIKA 9.

MIKROELEKTRONIKA 9. Napelemek: Szerkezet és működés Alkalmazás Új megoldások. A nap minden masodpercben 6.10 11 kg hidrogént alakít át héliummá, ami elég kb. 10 10 évre. Az elektromágneses sugárzás tartománya 0,2-3 m. A Földre jutó energia kevesebb: veszteségek.

miya
Download Presentation

MIKROELEKTRONIKA 9.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MIKROELEKTRONIKA 9. Napelemek: Szerkezet és működés Alkalmazás Új megoldások

  2. A nap minden masodpercben 6.1011 kg hidrogént alakít át héliummá, ami elég kb. 1010 évre. • Az elektromágneses sugárzás tartománya 0,2-3 m. • A Földre jutó energia kevesebb: veszteségek. • Ha a Nap 48* szögben áll, a beérkező energia 963W/m2. • 1 km2 Szahara kap kb. 109 W ! • Átalakítás: • Direkt melegítés • Biomassza, fotoszintézis • Elektromosság • 3.1. napelem (fotodióda) • 3.2. nanostruktúrák • Probléma: tárolás.

  3. p-n átmenet mint napelem ahol IL = Iscrövidre zárt áramkör árama ( a nemegyensúlyi elektronok árama), Is- a dióda telítési árama, RL -a terhelés, A - az átmenet felülete. Ha I=0, nyitott áramkör, a feszültség:

  4. Hatásfok: = Teljesítmény: Pmax ha dP/dV =0, FF-fill factor:

  5. Cells consisting of a single p–n junction that are made from bulk semiconductor have a maximum theoretical efficiency of 31% — and the best performing affordable commercial devices are about 18% efficient.

  6. New Directions Surface structuring to reduce reflection loss: for example, construction of the cell surface in a pyramid structure, so that incoming light hits the surface several times. Si:(111) etching! New material: for example, gallium arsenide (GaAs), cadmium telluride (CdTe) or copper indium selenide (CuInSe²). Nanostructured, organic- biocomposites. Grätzel cells: Electrochemical liquid cells with titanium dioxide as electrolytes and dye to improve light absorption.

  7. Amorf Si napelem: 5-6% Tandem napelem: 30%

  8. The structure comprised a multiple-quantum-well (MQW) layer sandwiched between a p-type layer and an n-type layer. The MQW itself comprised 20 layers of gallium arsenide, each about 7.5 nm thick. A solution of cadmium-selenium quantum dots, each just a few nanometres across, is deposited onto the structure. Inspired by photosynthesis: the photo-generated carriers within the quantum dots, which are confined within the etched channels, are close enough to the quantum wells that they can exchange energy via a dipole–dipole interaction. The patterned device was six times more efficient than the unpatterned one.

More Related