1 / 34

ELEN E4810: Digital Signal Processing Topic 5: Transform-Domain Systems

ELEN E4810: Digital Signal Processing Topic 5: Transform-Domain Systems. Frequency Response (FR) Transfer Function (TF) Phase Delay and Group Delay. 1. Frequency Response (FR). Fourier analysis expresses any signal as the sum of sinusoids e.g. IDTFT:

masao
Download Presentation

ELEN E4810: Digital Signal Processing Topic 5: Transform-Domain Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ELEN E4810: Digital Signal ProcessingTopic 5: Transform-Domain Systems • Frequency Response (FR) • Transfer Function (TF) • Phase Delay and Group Delay Dan Ellis

  2. 1. Frequency Response (FR) • Fourier analysis expresses any signal as the sum of sinusoidse.g. IDTFT: • Sinusoids are the eigenfunctions of LSI systems (only scaled, not ‘changed’) • Knowing the scaling for every sinusoid fully describes system behavior  frequency response describes how a system affects eachpure frequency Dan Ellis

  3. h[n] x[n] y[n] = x[n] h[n] * Sinusoids as Eigenfunctions • IR h[n] completely describes LSI system: • Complex sinusoid input i.e.  • Output is sinusoid scaled by FT at w0 H(ejw) = |H(ejw)|ejq(w) Dan Ellis

  4. System Response from H(ejw) • If x[n] is a complex sinusoid at w0then the output of a system with IR h[n]is the same sinusoid scaled by |H(ejw)| and phase-shifted by arg{H(ejw)} = q(w)where H(ejw) = DTFT{h[n]} (Any signal can be expressed as sines...) • |H(ejw)| “magnitude response”  gain • arg{H(ejw)} “phase resp.”  phase shift Dan Ellis

  5. X(ejw) w w0 - w0 Real Sinusoids • In practice signals are real e.g. • Real h[n]H(e-jw)=H*(ejw) = |H(ejw)|e-jq(w) Dan Ellis

  6. h[n] Acos(w0n+f) |H(ejw0)|Acos(w0n+f+q(w0)) Real Sinusoids • A real sinusoid of frequency w0passed through an LSI system with a real impulse response h[n]has its gain modified by |H(ejw0)|and its phase shifted by q(w0). Dan Ellis

  7. Transient / Steady State • Most signals start at a finite time e.g. What is the effect? Steady state- same as with pure sine input Transient response- consequence of gating Dan Ellis

  8. Transient / Steady State • FT of IR h[n]’s tail from time n onwards • zero for FIR h[n] for n ≥ N • tends to zero with large n for any ‘stable’ IR transient Dan Ellis

  9. n -1 1 2 3 4 5 6 FR example • MA filter  Dan Ellis

  10. FR example • MA filter: • Response to ... (jumps at sign changes:r=Mw/2p) Dan Ellis

  11. FR example • MA filter • inputw0 = 0.1pH(ejw0) ~ 4/5 ejf0w1 = 0.5pH(ejw1) ~ -1/5 ejf1 • output Dan Ellis

  12. 2. Transfer Function (TF) Linking LCCDE, ZT & Freq. Resp... • LCCDE: • Take ZT: • Hence: • or: TransferfunctionH(z) Dan Ellis

  13. Transfer Function (TF) • Alternatively, • ZT  • Note: sameH(z) • e.g. FIR filter, h[n] = {h0, h1,... hM-1}  pk=hk, d0=1, DE is ... if systemhas DE form ... from IR Dan Ellis

  14. Transfer Function (TF) • Hence, MA filter: Im{z} zM=1 i.e. M roots of 1@ z=ejrp/M Re{z}  1 ROC? pole @ z=1cancels z-plane Dan Ellis

  15. TF example • y[n] = x[n-1] - 1.2 x[n-2] + x[n-3] + 1.3 y[n-1] - 1.04 y[n-2] + 0.222 y[n-3] • factorize: z0 = 0.6+j0.8l0 = 0.3l1 = 0.5+j0.7 Dan Ellis

  16. TF example • Poles li ROC • causal ROC is |z| > max|li| • includes u.circle stable Im{z} z0 l1  Re{z} l0  1 l*1  z*0 Dan Ellis

  17. TF  FR • DTFT H(ejw) = ZT H(z)|z = ejw i.e. Frequency Response is Transfer Function eval’d on Unit Circle factor: Dan Ellis

  18. TF  FR zi, li are TF roots on z-plane Magnituderesponse Phaseresponse Dan Ellis

  19. Im{z} ejw-zi  ejw ejw-li  Re{z}  FR: Geometric Interpretation • Have • On z-plane: Constant/linear part Product/ratio of terms related to poles/zeros Each (ejw - n) term corresponds to a vector from pole/zero n to point ejw on the unit circle Overall FR is product/ratio ofall these vectors Dan Ellis

  20. Im{z} zi li  ejw-zi ejw-li ejw  Re{z}  FR: Geometric Interpretation • Magnitude|H(ejw)| is product of lengths of vectors from zeros divided by product of lengths of vectors from poles • Phaseq(w) is sum of angles of vectors from zerosminus sum of angles of vectors from poles Dan Ellis

  21. FR: Geometric Interpretation • Magnitude and phase of a single zero: • Pole is reciprocal mag. / negated phase Dan Ellis

  22. FR: Geometric Interpretation • Multiple poles / zeros: M Dan Ellis

  23. Geom. Interp. vs. 3D surface • 3D magnitude surface for same system Dan Ellis

  24. Geom. Interp: Observations • Roots near unit circlerapid changes in magnitude & phase • zeros cause mag. minima (= 0  on u.c.) • poles cause mag. peaks ( 1÷0= at u.c.) • rapid change in relative angle  phase • Pole and zero ‘near’ each other cancel out when seen from ‘afar’;affect behavior when z = ejw gets ‘close’ Dan Ellis

  25. X(ejw) H(ejw) w -w2 -w1 w1 w2 Filtering • Idea: Separate information in frequency with constructed H(ejw) • e.g. • Construct a filter:|H(ejw1)| ~ 1|H(ejw2)| ~ 0 • Then interested in this part don’t care aboutthis part “filteredout” Dan Ellis

  26. b a a n -2 -1 1 2 3 4 Filtering example • 3 pt FIR filter h[n] = {a b a} • mix of w1 = 0.1 rad/samp and w2 = 0.4 rad/samp  b = 13.46, a = -6.76...  to removei.e. makeH(ejw1) = 0 want = 1 at w = 0.4 = 0 at w = 0.1 ... M Dan Ellis

  27. Filtering example • FilterIR • Freq.resp • input/output Dan Ellis

  28. 3. Phase- and group-delay • For sinusoidal input x[n] = cosw0n, we saw • i.e. or • where is phase delay gain phase shiftor time shift subtraction so positive tp meansdelay (causal) Dan Ellis

  29. b a a n -2 -1 1 2 3 4 Phase delay example • For our 3pt filter: • i.e. 1 sample delay (at all frequencies)(as observed) Dan Ellis

  30. Group Delay • Consider a modulated carriere.g. x[n] = A[n]·cos(wcn)with A[n] = Acos(wmn) and wm<<wc • Delay of envelope and carrier may differ Dan Ellis

  31. X(ejw) wc-wm wc+wm w wc Group Delay • So: x[n] = Acos(wmn)·cos(wcn) • Now: • Assume |H(ejw)| ~ 1 around wcwmbut q(wc-wm) = ql ;q(wc+wm) = qu ... Dan Ellis

  32. Group Delay phase shiftof carrier phase shiftof envelope Dan Ellis

  33. Group Delay • If q(wc)is locally linear i.e. q(wc+Dw) = q(wc) + SDw, • Then carrierphase shiftso carrier delay , phase delay • Envelopephase shift  delay group delay Dan Ellis

  34. wc w tg, groupdelay tp, phasedelay q(w) Group Delay • If q(w) is not linear around wc, A[n] suffers “phase distortion”  correction... n Dan Ellis

More Related