Nuclear reactor theory intermezzo
This presentation is the property of its rightful owner.
Sponsored Links
1 / 40

Nuclear Reactor Theory Intermezzo PowerPoint PPT Presentation


  • 245 Views
  • Uploaded on
  • Presentation posted in: General

Nuclear Reactor Theory Intermezzo. William D’haeseleer. Nuclear Reactor Theory. Intermezzo: One-Speed Diffusion Theory of a Nuclear Reactor See Duderstadt & Hamilton: § 5.III A D § 5. IV [to a large extent to be studied independently].

Download Presentation

Nuclear Reactor Theory Intermezzo

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Nuclear reactor theory intermezzo

Nuclear Reactor TheoryIntermezzo

William D’haeseleer

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory

Nuclear Reactor Theory

Intermezzo:

One-Speed Diffusion Theory

of a Nuclear Reactor

See Duderstadt & Hamilton: § 5.III AD

§ 5. IV

[to a large extent to be studied independently]

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory 1 one speed mono energetic reactor equation

Nuclear Reactor Theory1. One speed (mono-energetic) reactor equation

Consider mono-energetic neutrons only

→ time-dependent neutron diffusion equation

Consider s as the neutron source due to fission

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory simple geometry slab reactor

Nuclear Reactor TheorySimple Geometry:Slab Reactor

Consider steady state: critical system

slab geometry; thickness a

a

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory simple geometry slab reactor1

Nuclear Reactor TheorySimple Geometry:Slab Reactor

Solution:

Because of symmetry: C = 0

a

Second b.c.:

Non-trivial solution:n: odd integer

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory simple geometry slab reactor2

Nuclear Reactor TheorySimple Geometry:Slab Reactor

For a critical reactor, only 1-st “harmonic” remains:

a

Since:

 “buckling”

For “a” very large, B1 very small, almost no buckle

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory simple geometry slab reactor3

Nuclear Reactor TheorySimple Geometry:Slab Reactor

Customary to designate

At any time in this case:

“Geometric Bucling”

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory simple geometry slab reactor4

Nuclear Reactor TheorySimple Geometry:Slab Reactor

Boundary conditions specify eigenvalues; constant A remains undetermined.

Must be found from overall power considerations

a

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory other simple reactor shapes

Nuclear Reactor TheoryOther simple reactor shapes

Sphere

and Φ finite everywhere

Solution:

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory other simple reactor shapes1

Nuclear Reactor TheoryOther simple reactor shapes

Infinite cylinder

and Φ finite everywhere

Zero’s of J0; J0(xn)=0

Solution:

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory other simple reactor shapes2

Nuclear Reactor TheoryOther simple reactor shapes

  • Bessel functions J0, Y0

  • Intermezzo on Bessel functions / following slides

    –see also text “Bessel functions and their relatives” (GVdB & WDH)

William D’haeseleer

BNEN – NRT 2011-2012


Bessel functions very elementary considerations

Bessel Functions— Very elementary considerations —

William D’haeseleer

2007-2008

William D’haeseleer

BNEN – NRT 2011-2012


Intermezzo bessel functions

Intermezzo Bessel Functions

William D’haeseleer

BNEN – NRT 2011-2012


Intermezzo bessel functions1

Intermezzo Bessel Functions

Solution of in rectangular coordinates

Take r as 1-D variable:

William D’haeseleer

BNEN – NRT 2011-2012


Intermezzo bessel functions2

Intermezzo Bessel Functions

  • Series expansion of Cosine and Sine functions

William D’haeseleer

BNEN – NRT 2011-2012


Intermezzo bessel functions3

Intermezzo Bessel Functions

Solution of in cylindrical coordinates

Take r as 1-D variable:

(Note:

error in pdf document)

J0 and Y0 are Bessel functions of 0-th order

William D’haeseleer

BNEN – NRT 2011-2012


Intermezzo bessel functions4

Intermezzo Bessel Functions

  • Series expansions of zero-th order Bessel Functions

William D’haeseleer

BNEN – NRT 2011-2012


Intermezzo bessel functions5

Intermezzo Bessel Functions

J0 behaves like a damped cosine

William D’haeseleer

BNEN – NRT 2011-2012


Intermezzo bessel functions6

Intermezzo Bessel Functions

William D’haeseleer

BNEN – NRT 2011-2012


Intermezzo bessel functions7

Intermezzo Bessel Functions

Asymptotic approximations (x sufficiently large)

For x large, each behaves as “damped” cos and sin

by sqrt(x)

William D’haeseleer

BNEN – NRT 2011-2012


Intermezzo bessel functions8

Intermezzo Bessel Functions

Solution of in rectangular coordinates

William D’haeseleer

BNEN – NRT 2011-2012


Intermezzo bessel functions9

Intermezzo Bessel Functions

Solution in cylindrical coordinates

Take r as 1-D variable:

(Note:

error in pdf document)

I0 and K0 are Modified Bessel functions of 0-th order

William D’haeseleer

BNEN – NRT 2011-2012


Intermezzo bessel functions10

Intermezzo Bessel Functions

Modified Bessel Functions of 0-th order

William D’haeseleer

BNEN – NRT 2011-2012


Intermezzo bessel functions11

Intermezzo Bessel Functions

Asymptotic approximations (x sufficiently large)

For x large, each behaves as “reduced” exponentials or hyperbolic functions

by sqrt (x)

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory other simple reactor shapes3

Nuclear Reactor TheoryOther simple reactor shapes

Sphere / Infinite cylinder / Parallelepiped / Finite cylinder

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory other simple reactor shapes4

Nuclear Reactor TheoryOther simple reactor shapes

William D’haeseleer

BNEN – NRT 2011-2012

Ref: Lamarsh NRT


Nuclear reactor theory other simple reactor shapes5

Nuclear Reactor TheoryOther simple reactor shapes

William D’haeseleer

BNEN – NRT 2011-2012

Ref: Lamarsh NRT


Nuclear reactor theory 1 one speed mono energetic reactor equation1

Nuclear Reactor Theory1. One speed (mono-energetic) reactor equation

Evolution of flux dependent upon

  • geometry (diffusion; leakage)

  • material composition (absorption; fission)

→ For arbitrary geometry & composition,

difficult to find Bg ; also in general:

Steady state only arises when reactor is critical;

i.e., whenk = 1

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory 1 one speed mono energetic reactor equation2

Nuclear Reactor Theory1. One speed (mono-energetic) reactor equation

In general, k ≠ 1;

therefore apply a “trick” to find k = f (dimensions, material composition)

then set k = 1relationship between dimensions & material composition for criticality

!

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory 1 one speed mono energetic reactor equation3

Nuclear Reactor Theory1. One speed (mono-energetic) reactor equation

≡ B²called“Material Buckling” Bm2

-- for k = 1 --

At this stage, k still unknown, since B² is not known

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory 1 one speed mono energetic reactor equation4

Nuclear Reactor Theory1. One speed (mono-energetic) reactor equation

Note (1):

  • suppose one writes

    → one could introduce f = fuel utilization factor

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory 1 one speed mono energetic reactor equation5

Nuclear Reactor Theory1. One speed (mono-energetic) reactor equation

Note (2):Consider an infinite reactor

in such a reactor, Φ independent of position

(uniform throughout)

reduces to

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory 1 one speed mono energetic reactor equation6

Nuclear Reactor Theory1. One speed (mono-energetic) reactor equation

Note (3):Consider now general case (finitereactor)

  • Take now as a definition:

    Then, source term

    → time-(in)dependent diffusion equation can be written as:

Time independent

Time dependent

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory 1 one speed mono energetic reactor equation7

Nuclear Reactor Theory1. One speed (mono-energetic) reactor equation

Note (4):still finite reactor

  • Time independent case:

Or for a critical reactor, k = 1

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory mono energetic critical equation

Nuclear Reactor TheoryMono-energetic critical equation

Reactor is critical if

Material Buckling

Geometric Buckling; B12=Bg2

for simple slab

“critical equation”

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory mono energetic critical equation1

Nuclear Reactor TheoryMono-energetic critical equation

“critical equation”

determines requirement to have a critical reactor:

- material composition

- dimensions etc.

determines requirement to have a critical reactor:

- material composition

- dimensions etc.

Alternative expression of critical equation:

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory mono energetic critical equation2

Nuclear Reactor TheoryMono-energetic critical equation

Physical meaning of critical equation

Consider a bare reactor of arbitrary geometry.

# of neutrons leaking out of the system

# of neutrons absorbed

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory mono energetic critical equation3

Nuclear Reactor TheoryMono-energetic critical equation

Physical meaning of critical equation

Non-leakage probability*:

From:

William D’haeseleer

BNEN – NRT 2011-2012

*Note: symbols PL and PNL are used interchangeably and mean the same!


Nuclear reactor theory mono energetic critical equation4

Nuclear Reactor TheoryMono-energetic critical equation

Physical meaning of critical equation

Interpretation of

Physical meaning of critical equation

Interpretation of

# of neutrons absorbed

Gives rise to a release of fission neutrons:

William D’haeseleer

BNEN – NRT 2011-2012


Nuclear reactor theory mono energetic critical equation5

Nuclear Reactor TheoryMono-energetic critical equation

Physical meaning of critical equation

Physical meaning of critical equation

Of these neutrons, only a fraction PL does not leak out, and gives rise to absorption in the next generation:

Hence:

 For a critical reactor:

William D’haeseleer

BNEN – NRT 2011-2012


  • Login