1 / 31

Gram Positive Cocci

Gram Positive Cocci. Dental Optometry Microbiology Ken B. Waites, M.D., F(AAM). Objectives. To review and discuss: microbiological characteristics epidemiology virulence factors associated diseases laboratory detection

lorin
Download Presentation

Gram Positive Cocci

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gram Positive Cocci Dental Optometry Microbiology Ken B. Waites, M.D., F(AAM)

  2. Objectives • To review and discuss: • microbiological characteristics • epidemiology • virulence factors • associated diseases • laboratory detection of clinically important gram-positive cocci and gram-positive bacilli. • Organisms to be discussed include: • Staphylococcus • Streptococcus • Enterococcus • Listeria • Corynebacterium • Bacillus

  3. Staphylococcus • Most important genus in Family Micrococcaceae • Other genera • Stomatococcus • Micrococcus

  4. Habitat • S. aureus • anterior nares 50-75% healthy people • skin & mucous membranes • hospital environment • S. epidermidis & others • resident skin flora, gut, upper respiratory tract • S. saprophyticus • Urinary tract in young women

  5. Lab Characteristics • Gram-positive cocci (1 m) in clusters • Culture - Aerobic • S. aureus is  hemolytic • Coagulase • Catalase • Mannitol fermentation S. aureus blood agar mannitol salt agar

  6. Catalase Test for Distinguishing Staphylococci from Streptococci catalase O2 H2O H2O2 + Bubbles Strep. Negative Staph. positive

  7. Tube Coagulase Test • Free coagulase secreted by S. aureus butnot CNS • Clots rabbit plasma

  8. Cell Wall of S. aureus

  9. Antigenic Structures & Virulence Factors of S. aureus • Cell wall peptidoglycan • elicits production of IL-1 and opsonic antibody • PMN chemotaxis “pyogenic” • induces sepsis • activates complement • teichoic acid binds fibronectin on host cells • Protein A - binds Fc of IgG • Capsule (some strains) antiphagocytic

  10. S. aureus Soluble Virulence Factors • Catalase - reduce phagocyte killing - remove H2O2 • Coagulase - clots plasma (free & bound) • Hyaluronidase - destroys connective tissue • Beta lactamase - destroys beta lactam drugs • Altered Penicillin binding proteins (PBP2’) • Fibrinolysin • Lipases • Nucleases

  11. S. aureus Soluble Virulence Factors • Cytotoxins & leukocidins • lyse white blood cells (Panton-Valentine) • release lysosomal enzymes  damage tissue • Exfoliatin • interrupts intercellular skin junctions • “Scalded Skin Syndrome” • Toxic Shock Toxin • stimulates T cells  cytokines, • endothelial damage  rash • “Toxic Shock Syndrome” • Enterotoxins • stimulate vomiting by interaction with GI neural receptors (food poisoning)

  12. S. aureus Diseases Skin and soft tissue infections Furuncles Carbuncles Wound infections Cellulitis Impetigo Bacteremia Endocarditis CNS Infections Brain abscess Meningitis - rare Epidural abscess Impetigo

  13. Pulmonary Infections embolic aspiration Musculoskeletal osteomyelitis septic arthritis Genitourinary Tract renal carbuncle lower UTI Toxin mediated diseases scalded skin syndrome food poisoning toxic shock disease S. aureus Diseases Toxic shock Scalded skin

  14. Treatment of Staph. Infections • Increase in oxacillin-resistant organisms that are resistant to most other antibiotics except vancomycin (MRSA) • Nosocomial infections • Recent emergence of virulent community-acquired MRSA in skin & soft tissue infection • First high-level vancomycin-resistant S. aureus reported July 2002 contains vanA gene from Enterococcus

  15. Coagulase negative staphylococci • Opportunistic infections • bacteremias • endocarditis • neutropenic patients • Neonates • UTIs (S. saprophyticus) • Polysaccharide “slime” • protects bacteria • mediates attachment to catheters, etc. White non-hemolytic colonies

  16. Streptococcaceae • Streptococcus • Enterococcus Staph Strep Gram stain of staph (clusters) and strep (chains)

  17. Streptococcus Classification • Hemolysis • beta • alpha • gamma • Lancefield Groups • (A-T-  hemolytic) • group-specific cell wall polysaccharide • Species • phenotypic biochemical reactions    Hemolytic Reactions

  18. Streptococcus Habitat • Skin, mucous membranes, respiratory tract and Gl/GU tracts, depending on species • 20% of children may carry GAS in their pharynx during winter months. • S. pneumoniae is commonly isolated from the respiratory tract of asymptomatic carriers. • Enterococci in gut flora are are important pathogens in hospitals where they are selected by high antibiotic usage. • Organisms spread by droplets, direct contact and fomites.

  19. Lab Characteristics • Morphology and Gram stain • Gram-pos. cocci 0.7 - 0.9 m • pairs or chains • Catalase-negative • Most grow on sheep blood agar • Aerobic or anaerobic • Enhanced by CO2 • Antigenic grouping • Biochemical identification S. pyogenes in blood S. pneumoniae in sputum

  20. Antigenic Structure & Virulence Factors of S. pyogenes • Hyaluronic acid capsule - antiphagocytic • Hyaluronidase - tissue penetration • Group specific cell wall antigen distinguishes from B,C,D,F,G, etc. • Beta hemolytic

  21. Antigenic Structure & Virulence Factors of S. pyogenes • M Protein • Virulence factor present on pilus with teichoic acid • Organisms lacking it are readily opsonized and phagocytized • Binds fibrinogen, fibrin & degradation products forming dense coating on the organism's surface, blocking complement • Antibody against M protein is an important protective mechanism, but repeated infections with strains possessing one of over 80 different serotypes can occur • Autoantibody target-Acute Rheumatic Fever

  22. Antigenic Structure & Virulence Factors of S. pyogenes • ErythrogenicToxin “Scarlet Fever” • Streptokinases • transform plasminogen to plasmin • digest fibrin • DNAase • depolymerizes DNAantibody used to follow pyoderma • Hemolysins “Streptolysins” • Important immunogens • Antibody against streptolysin O used to follow course of pyoderma • Streptolysin S -  hemolysis Strep. cellulitis

  23. Antigenic Structure & Virulence Factors of S. pyogenes • Protein F - facilitates attachment by binding fibronectin • Protein G - binds Fc portion of antibody • Diphosphopyridine nucleotidase (DPNase) – enzyme kills WBCs • C5a peptidase Erysipelas

  24. S. agalactiae “Group B” • Pathogen of newborns & older debilitated adults • Antibody against type-specific capsular antigen is protective • CAMP Test - interaction of CAMP factor (sphingomyelinase) with  hemolysin of S. aureus to potentiate hemolytic activity • Hippurate hydrolysis S. aureus GBS

  25. Diseases Due to  Hemolytic Streptococci

  26. S. pneumoniae • Asymptomatic carriage • Colonization precedes disease • Most common cause of: • community acquired pneumonia (bacteremia) • otitis media (children) • meningitis • Species-specific C polysaccharide • No Lancefield antigen • 90 capsular serotypes • Alpha hemolytic • Bile soluble, optochin susceptible • Often require CO2 for growth Optochin test

  27. S. pneumoniae Virulence Factors • Antiphagocytic capsule – immunogen • PspA: inhibits opsonization • Autolysin – release cell components • Pneumolysin • Cytotoxic – inhibit cilia, wbcs • lyses RBCs • activates classic complement path. • stimulates cytokines  tissue damage & purulent inflammation • Hydrogen peroxide - tissue damage • Surface protein adhesins • Neuraminidase • IgA protease • Peptidoglycan • activate alternate complement • cytokine release • Transformation– antibiotic resistance • Intracellular invasion sputum - pneumonia Capsule Quellung Reaction

  28. Fatal Pneumococcal Meningitis

  29. Pneumococcal Vaccine • 23 valent polysaccharide vaccine - adults • 7 valent conjugate vaccine - children

  30. Viridans streptococci • Most human strains are commensals of the oral cavity & upper respiratory tract • Alpha hemolysis • Do not have Lancefield group antigens • Differentiate species biochemically • Usually of low pathogenicity • Important causes of endocarditis • Dental caries (S. mutans)  dextran from glucose

  31. Enterococcus • At least 12 species • Usually non-hemolytic • E. faecalis most common • Distinguish from streptococci by: • esculin hydrolysis • growth in 6.5% NaCl • PYR hydrolysis (Group A  strep. are +) • Enteric flora • Opportunist - nosocomial pathogen • Intrinsic antimicrobial resistance • E. faecium - vancomycin-resistance • Abscesses, urinary tract, endocarditis, abdominal/pelvic, bacteremia, wound infections

More Related