Sistemas pasobandas
This presentation is the property of its rightful owner.
Sponsored Links
1 / 9

Sistemas pasobandas PowerPoint PPT Presentation


  • 76 Views
  • Uploaded on
  • Presentation posted in: General

GIOTRONIC. El ANALISIS DE SISTEMAS PASABANDA PUEDE SER SIMPLIFICADO AL ESTABLECER UNA ANALOGIA O ISOMORFISMO ENTRE SISTEMAS PASABAJO Y PASABANDA. ESTA ANALOGIA SE BASA EN EL USO DE LA TRANSFORMADA HILBERT PARA LA REPRESENTACION DE SEÑALES PASABANDA.

Download Presentation

Sistemas pasobandas

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Sistemas pasobandas

GIOTRONIC

  • El ANALISIS DE SISTEMAS PASABANDA PUEDE SER SIMPLIFICADO AL ESTABLECER UNA ANALOGIA O ISOMORFISMO ENTRE SISTEMAS PASABAJO Y PASABANDA.

  • ESTA ANALOGIA SE BASA EN EL USO DE LA TRANSFORMADA HILBERT PARA LA REPRESENTACION DE SEÑALES PASABANDA.

  • SI SE CONSIDERA UNA SEÑAL BANDA ESTRECHA x(t) CON TRANSFORMADA DE FOURIER X(f), ASUMIMOS QUE EL ESPECTRO ESTA LIMITADO A LAS FRECUENCIAS ±W Hz ALREDEDOR DE LA FRECUENCIA DE PORTADORA ±fc. TAMBIEN ASUMIMOS QUE W<fc.

Sistemas pasobandas


Sistemas pasobandas1

GIOTRONIC

  • ASI LA SEÑAL SE PUEDE REPRESENTAR DE FORMA CANONICA EN TERMINOS DE SUS COMPONENTES DE FASE Y CUADRATURA

  • SE APLICA ESTA SEÑAL COMO ENTRADA A UN SISTEMA LTI PASABANDA CON RESPUESTA AL IMPULSO h(t) Y FUNCION DE TRANSFERENCIA H(f). SUPONEMOS QUE LA RESPUESTA EN FRECUENCIA DEL SISTEMA ESTA LIMITADA A LAS BANDAS ±B EN TORNO A ±fc.

  • EN GENERAL EL ANCHO DE BANDA DEL SISTEMA (2B) ES USUALMENTE MAS ESTRECHO O IGUAL QUE EL DE LAS SEÑALES DE ENTRADA 2W.

Sistemas pasobandas


Sistemas pasobandas2

GIOTRONIC

  • SE PUEDE REPRESENTAR LA RESPUESTA AL IMPULSO h(t) EN FUNCION DE SU COMPONENTE DE FASE hc(t) Y LA COMPONENTE EN CUADRATURA hs(t) SEGÚN SU FORMA CANONICA

  • EL ANALISIS DE UN SISTEMA PASABANDA QUE SE COMPLICA POR LA PRESENCIA DEL FACTOR e(j2fct), ES SUSTITUIDO POR OTRO ANALISIS PASO BAJO QUE MANTIENE LA ESENCIA DEL PROCESO DE FILTRADO

Sistemas pasobandas


Sistemas pasobandas3

GIOTRONIC

Sistemas pasobandas

  • DIAGRAMA DE BLOQUES QUE ILUSTRA LAS RELACIONES ENTRE LAS COMPONENTES EN FASE Y EN CUANDRATURA DE LA REPUESTA DE UN FILTRO PASOBANDA Y LAS CORRESPONDIENTES SEÑALES DE ENTRADA


Sistemas pasobandas4

GIOTRONIC

Sistemas pasobandas

  • EL PROCEDIMIENTO PARA EEVALUAR LA REPUESTA DE UN SISTEMA PASOBANDAS ANTE UNA SEÑAL PASOBANDAS DE ENTRADAS ES EL SIGUIENTE

  • LA SEÑAL PASOBANDA DE ENTRAD X(t) SE SUSTITUYE POR SU ENVOLVENTE COMPLEJA X’(t), LA CUAL SE RELACIONA CON X(t) MEDIANTE

  • X(t) = Re[X’(t)exp(j2πfc t)]

  • EL SISTEMA PASOBANDA, CON RESPUETA DE IMPULSO h(t), SE SUSTITUYE POR UN ANALOGICO PASOBANDA, EL CUAL SE CARACTERIZA POR UNA RESPUESTA AL IMPULSO COMPLEJA h’(t) RELACIONADA CON h(t) POR MEDIO DE

  • H(t)=Re[h’(t)exp(j2πfc t)]


Sistemas pasobandas5

GIOTRONIC

Sistemas pasobandas

  • LA ENVOLVENTE COMPLEJA y’(t) DE LA SEÑAL PASOBANDA DE SALIDA y(t) SE OBTIENE AL APLICAR LA CONVOLUCION h’(t) CON x’(t), COMO INDICA

  • 2y’(t)=h’(t) * x’(t)

  • LA SALIDA DESEADA y(t) SE OBTIENE FINALMENTE DE LA ENVOLVENTE COMPLEJA y’(t) UTILIZANDO LA RELACION

  • y’(t)=Re[y’(t)exp(j2πfc t)]


Sistemas pasobandas

Retraso de fase y de grupo

GIOTRONIC

  • RETRASO DE FASE ES EL RETRASO DE PROPAGACIÓN DE LA PARTE DE LA ONDA QUE IDENTIFICA SU FASE , EN LA PROPAGACIÓN DE UNA ONDA DE FRECUENCIA ÚNICA DE UN PUNTO A OTRO DE UN SISTEMA.

  • RETRASO DE GRUPO TAMBIÉN CONOCIDO COMO RETARDO ENVOLVENTE, ES EL RETARDO DE TRANSMISIÓN DE INFORMACIÓN MODULADA SOBRE UNA PORTADORA.


Sistemas pasobandas

Retraso de fase y de grupo

GIOTRONIC

  • CUANDO UNA SEÑAL ES TRANSMITIDA A TRAVES DE UN DISPOSITIVO DISPERSIVO (SELECTIVO EN FRECUENCIA) COMO UN FILTRO O CANAL DE COMUNICACIONES, ALGUN RETRASO ES AGREGADO A LA SEÑAL DE SALIDA EN RELACION A LA DE ENTRADA.

  • EN UN FILTRO PASABAJO O PASABANDA IDEAL, LA RESPUESTA EN FASE VARIA LINEALMENTE CON LA FRECUENCIA DENTRO DE LA BANDA DE PASO DEL FILTRO, POR LO CUAL EL FILTRO INTRODUCE UN RETARDO CONSTANTE IGUAL A t0 .

  • ASI ESE RETARDO CONTROLA LA PENDIENTE DE LA RESPUESTA DE FASE LINEAL DEL FILTRO.


Retraso de fase y de grupo

GIOTRONIC

Retraso de fase y de grupo

  • SIN EMBARGO HAY QUE TENER EN CUENTA QUE EL RETARDO DE FASE NO ES EL RETARDO REAL DE LA SEÑAL. ESTO ES DEBIDO A QUE UNA SEÑAL SINUSOIDAL DE ESTADO ESTABLE NO LLEVA NINGUNA INFORMACION, Y POR LO TANTO, NO SE PUEDE DEDUCIR QUE EL RETARDO DE FASE SEA EL RETARDO REAL DE LA SEÑAL.

  • LA INFORMACION SE PUEDE TRANSMITIR MODIFICANDO CIERTO PARAMETRO DE LA SEÑAL SINUSOIDAL SEGUN LA INFORMACION A TRANSMITIR(MODULACION).

  • SUPONIENDO QUE UNA SEÑAL SINUSOIDAL DE VARIACION LENTA SE MULTIPLICA POR UNA SEÑAL SINUSOIDAL PORTADORA. LA SEÑAL RESULTANTE SE DENOMINA SEÑAL MODULADA Y CONSISTE EN UN GRUPO DE FRECUENCIAS ESTRECHO EN TORNO A LA FRECUENCIA PORTADORA.

  • CUANDO ESTA SEÑAL MODULADA SE TRANSMITE POR EL CANAL, SE PUEDE VER QUE EXISTE UN RETARDO ENTRE LA ENVOLVENTE DE LA SEÑAL DE ENTRADA Y LA DE LA SEÑAL DE SALIDA.

  • ESTE RETARDO SE DENOMINA RETARDO DE GRUPO O RETARDO DE ENVOLVENTE, Y REPRESENTA EL RETARDO REAL DE LA SEÑAL DE INFORMACION.


  • Login