1 / 76

SU VE ÇÖZELTİLER

SU VE ÇÖZELTİLER. Dr. Sedat TÜRE. SU. Su, bir inorganik maddedir. Su, H 2 O molekül yapısında dır.

kyra-wilson
Download Presentation

SU VE ÇÖZELTİLER

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SU VE ÇÖZELTİLER Dr. Sedat TÜRE

  2. SU Su, bir inorganik maddedir

  3. Su, H2O molekül yapısındadır

  4. Su molekülünün oksijen tarafı elektronlardan zengindir ve lokal bir negatif () yüklü bölge oluşturur; hidrojen tarafı da elektronlardan fakirdir ve lokal bir pozitif (+) yüklü bölge oluşturur

  5. Su molekülleri, hem katı halde hem de sıvı halde iken, birbirlerine hidrojen köprüsü bağlarla bağlanma yeteneğindedirler. Su moleküllerinin buzda %100’ü, oda sıcaklığındaki suda %70’i, 100oC’deki suda %50’si hidrojen bağlarıyla art arda birbirlerine bağlanmışlardır

  6. Su, polar bir çözücüdür (solvent). Su içindeki katyonlar su molekülünün negatif yük merkezini çekerler; anyonlar da su molekülünün pozitif yük merkezini çekerler

  7. Polar biyomoleküller su içerisinde rahatça çözünürler (hidrofilik-suyu seven-). Nonpolar biyomoleküller su içerisinde zayıf çözünürler ki suda çözünmeyen ve suyla etkileşimden kaçınan maddeler hidrofobik-su sevmez- olarak tanımlanırlar

  8. Hidrofobik etkileşimler canlıların oluşmasında önemli role sahiptirler

  9. Polar ve nonpolar bölgeleri aynı zamanda bulunduran yapılara amfipatik yapılar denir. Amfipatik yapılar, suda misel, çift tabaka, vezikül oluştururlar

  10. ÇÖZELTİLER Çözücü (solvent) denen dağıtıcı bir faz ile bir veya birçok dağıtılmış fazdan (çözünen, solüt) kurulan sıvı bir örnek durum çözelti (solüsyon) olarak tanımlanır

  11. Partiküllerin yapısına göre çözeltiler 1) Monodispers çözeltide parçacıkların boyutu aynıdır. Polidispers çözeltide parçacıkların boyutu farklıdır ve analitik tekniklerle ayrılabilirler 2) Moleküler çözeltiler (gerçek çözeltiler) çözünenlerin mol kütlesi 10000’in altında iyon ve moleküllerden kurulmuş çözeltilerdir. Makromoleküler çözeltiler çözünenleri büyük moleküllü olanlardır 3) Misel çözeltiler çözünenleri hacimli parçacıklardan veya moleküllerin yığışmasından (agregasyon) kurulur

  12. Makromoleküler çözeltiler ve misel çözeltilere kolloidal çözeltiler veya sol denir

  13. Ortam sıcaklığında suyla çalkalamakla bazı yapılar bir çözelti oluşturmazlar; çabuk çöken, dayanıksız, heterojen ve süspansiyon denen bir durumu yaparlar

  14. Peltemsi bir şekil alan ve katı maddelerin bir çok özelliklerine sahip olan kolloidal sisteme jel denir

  15. Çözünen madde konsantrasyonuna göre çözeltiler 1) Dilüe çözeltiler (seyreltik çözeltiler) 2) Konsantre çözeltiler (derişik çözeltiler) 3) Doymuş çözeltiler (satüre çözeltiler)

  16. Dilüe çözeltiler (seyreltik çözeltiler),çözünmüş madde miktarının az olduğu çözeltilerdir (konsantrasyonu düşük çözeltiler)

  17. Konsantre çözeltiler (derişik çözeltiler),çözünmüş madde miktarının fazlaolduğu çözeltilerdir (konsantrasyonu yüksek çözeltiler)

  18. Doymuş çözeltiler (satüre çözeltiler), çözünmüş madde miktarının maksimumolduğu çözeltilerdir

  19. Çözelti konsantrasyonları Bir çözeltinin konsantrasyonu, çözeltinin belirli bir volümü içinde çözünmüş olan madde (substrat) miktarıdır

  20. -Yüzde (% ) -Molarite (M) -Molalite (m) -Normalite (N) çözelti konsantrasyonlarını anlatmak için kullanılan ifadelerdir

  21. Yüzde (%) konsantrasyonlar

  22. Çözeltinin konsantrasyonu %8w/w deyince, 8 g çözünenin 100 g çözeltide bulunduğu anlaşılır

  23. Çözeltinin konsantrasyonu %70v/v deyince, 70 mL çözünenin 100 mL çözeltide bulunduğu anlaşılır Hem çözücünün hem çözünenin sıvı olduğu çözelti konsantrasyonunu ifade etmek için kullanılır

  24. %15’lik 500 mL etanol çözeltisi hazırlamak için 0,15x500=75 mL etanol 500 mL’lik balon jojede total volüm 500 mL olacak şekilde distile su ile karıştırılır H2SO4 gibi asitlerin çözünmeleri sırasında açığa çıkan fazla miktarda ısı balonun aşırı ısınma ile çatlamasına neden olabilir. Bu durumda soğutmak amacıyla balonun dışı, akan çeşme suyu altında tutulmalı, fakat bu sırada balonun içine çeşme suyu kaçmamasına dikkat etmelidir Ayrıca asit üzerine su eklenmemelidir Asit sulandırmalarında daima su üzerine asit eklemelidir

  25. %w/v, genellikle g/dL (g/100mL)’ye karşılık gelir Çözeltinin konsantrasyonu %8w/v deyince, 8 g çözünenin 100 mL çözeltide bulunduğu anlaşılır %8= 8g/100mL= 8g/dL=80g/L =8000mg/100mL=8000mg/dL=80000mg/L

  26. %20’lik 250 mL üre çözeltisi hazırlamak için -0,20x250=50 g üre 250 mL’lik balon jojeye konur -önce bu miktar üre çözünecek kadar distile su eklenerek bilekten seri hareketlerle çalkalanarak çözünme sağlanır -sonra total hacim distile su ile 250 mL’ye tamamlanır KOH ve NaOH gibi bazların çözünmeleri sırasında açığa çıkan fazla miktarda ısı balonun aşırı ısınma ile çatlamasına neden olabilir. Bu durumda soğutmak amacıyla balonun dışı, akan çeşme suyu altında tutulmalı; fakat bu sırada balonun içine çeşme suyu kaçmamasına dikkat etmelidir

  27. Molarite (M) Polarite, 1 L çözeltideki mol sayısıdır Molaritenin ölçüm birimi mol/litre ve sembolü M’dir 1 M çözelti deyince çözeltinin 1 litresinde 1 mol çözünen bulunduğu anlaşılır 1 M=1 mol/L=1000 mM=1000000 M 1 mM=1 mmol/L= 0,001 M 1M=1 µmol/L= 0,001 mM

  28. 1 mol glukoz=180 g glukoz 180 g glukoz=1 mol glukoz 1 mol NaCl=58,5 g NaCl 58,5 g NaCl=1 mol NaCl 1mol CaCl2=111 g CaCl2 111 g CaCl2=1 mol CaCl2

  29. 1 L 0,1 M’lık CuSO4 (molekül ağırlığı 160) çözeltisi için 1x0,1x250=25 gram CuSO4·5H2O gerekir 25 g CuSO4·5H2O= 16 g CuSO4= 0,1 mol CuSO4

  30. Dansitesi 1,19 olan % 38’lik konsantre HCl’den (HCl’nin molekül ağırlığı 36,46) 500 mL 2M’lık HCl çözeltisinin, hazırlamak için gerekir

  31. Molalite (m) Ağırlık/ağırlık ölçümüdür 1 molal çözelti deyince 1000 g (1 kg) çözücüde 1 mol çözünen çözündüğü anlaşılır 1 molal=1000 mmolal 1 mmolal=0,001 molal

  32. Molalite, sıcaklık değişimine bağımlı değildir Konsantrasyon birimi olarak molariteye oranla daha duyarlıdır. Buna rağmen klinik laboratuvarlarda kullanımı yaygın değildir Klinik laboratuvarlarda kullanılan çözeltiler sulu çözeltiler olduklarından molalite ile molarite arasında pek büyük fark yoktur

  33. Normalite (N) Normalite, 1 L çözeltideki ekivalan ağırlık sayısıdır Normalitenin ölçüm birimi Eq/litre ve sembolü N’dir 1 N çözelti deyince çözeltinin 1 litresinde 1 Eq (1000 mEq) çözünen bulunduğu anlaşılır 1 N=1 Eq/L=1000 mEq/L=1000000 Eq/L 1 mN=0,001 N=1000 N=1 mEq/L

  34. 500 mL 2,5 N’lik NaOH (molekül ağırlığı 40) çözeltisi hazırlamak için gerekir

  35. Dansitesi 1,19 olan %38’lik konsantre HCl’den (HCl’nin molekül ağırlığı 36,46) 250 mL 0,1N’lik HCl çözeltisini hazırlamak için gerekir

  36. Konsantrasyon birimlerinin birbirine çevrilmesi

  37. Çözeltilerin seyreltilmesi Konsantre bir çözeltiden dilüe bir çözelti hazırlanmasına seyreltme (dilusyon) denir

  38. Biyokimyada yapılan seyreltmeler, toplam çözeltinin bütün özelliklerini içerecek şekilde hazırlanır 1:100’luk seyreltme yapılırken konsantre çözeltiden 1 birim alınarak toplam hacim olan 100 birime tamamlanır

  39. 25 µL serum ile 25 µL tuz çözeltisi karıştırılırsa, serum 25:50= 1/2 oranında seyreltilmiş olur

  40. Sabit konsantrasyondan bir alt düşük konsantrasyona ulaşmak için seri seyreltmeler yapılır

  41. Çözeltilerde C molarite veya normalite olarak ifade edildiği zaman

  42. Hidratlı maddeler Bir kimyasal molekül üretildiğinde, tuz moleküllerine bağlı, değişen miktarlarda su molekülleri (hidrat suyu) içerir CuSO4 molekül ağırlığı 160 CuSO4H2O molekül ağırlığı 178 CuSO45H2O molekül ağırlığı 250

  43. Hidratlı maddelerdeki su molekülleri, çözelti hesaplamalarında dikkate alınır. Örneğin; 250 mL %10’luk CuSO4 çözeltisini hidrasyon suyu olmayan bakır sülfattan (CuSO4, molekül ağırlığı 160) değil de 1 molekül hidrasyon suyu olan bakır sülfattan (CuSO4H2O, molekül ağırlığı 178) ile hazırlayacaksak tartacağımız CuSO4H2O miktarı

  44. pH, ASİTLER VE BAZLAR Bir su molekülü, çok az sayıda bile olsa komşu su molekülü lehine bir proton yitirebilir ve böylece bir hidronyum iyonu (H3O+) oluşturabilir. Su, az da olsa hidronyum ve hidroksil iyonlarına ayrışır

  45. Sulu çözeltilerde, saf suda olduğu gibi H+ ile OH’nin konsantrasyonları eşit olduğunda, çözeltinin nötral pH’ da olduğu ifade edilir Bir çözeltideki H+ iyonları konsantrasyonunun eksi logaritması çözeltinin pH’ı olarak ifade edilir

  46. Nötral pH’da H+ ile OH’nin konsantrasyonu birbirine eşit ve 10-7M’dır

  47. 25oC’de nötral bir çözeltinin pH’ı 7’dir Bir çözeltinin pH’ı 7’den küçükse (H+ iyonu konsantrasyonu daha yüksek), çözelti asidiktir Bir çözeltinin pH’ı 7’den büyükse (H+ iyonu konsantrasyonu daha düşük), çözelti alkali veya baziktir

  48. Yüksek konsantrasyonda H+ iyonu (proton) içeren sulu çözeltiler asitlerdir Yüksek konsantrasyonda OH¯ iyonu içeren sulu çözeltiler bazlardır

  49. Asitler proton vericisi (donör), bazlar proton alıcısıdırlar (akseptör) Hem proton vericisi (donör), hem proton alıcısı (akseptör) olan maddelere amfoter maddeler denir

More Related