1 / 26

Savitch Chapter 10

Learn about the use of structures and classes in C++ to group related data and functions, and how they improve code modularity and information hiding. (500 characters)

kpatel
Download Presentation

Savitch Chapter 10

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Savitch Chapter 10 • Defining Classes • Topics: • Structures • Class Definitions • Members • Data Members • Member Functions • Public/Private Sections • Types of Member Functions CS 150

  2. Structured Data A major problem with modular code is the need to use a large number of parameters to deal with several objects that might be closely related to each other. A preferable approach would be to group these values together in a single structure, which could easily be passed to a function as a single parameter. void processSale (string inventoryNbr, float price, float weight, int &nbrInStock, int &nbrSoldThisYear, intstoreNbr, int month, int day, int year, float time); void processSale (Merchandise &itemSold, Time timeOfSale); CS 150

  3. Structs in C++ C++ provides astructmechanism for defining such structures. struct Merchandise { string inventoryNbr; float price; float weight; int nbrInStock; int nbrSoldThisYear; int storeNbr; }; struct Time { int month; int day; int year; float timeOfDay; }; CS 150

  4. Structure Variables and Parameters Once astructhas been defined, variables of that type can be declared. const float EmployeeDiscountPercent; intdailyQuota; Merchandise saleItem, itemSold; Time timeOfSale, openingTime, closingTime; And parameters and functions of that type can be used. void processSale (Merchandise &itemSold, Time timeOfSale); Time calculateStoreClosing(intmonthNo, intdayNo, intyearNo);  void main() {  closingTime = calculateStoreClosing(12, 24, 1998); processSale(saleItem, closingTime);  } CS 150

  5. Working with the Structure Members The data elements comprising astructare known as its members. The members are accessed by means of the C++ “dot” notation. Time calculateStoreClosing(intmonthNo, intdayNo, intyearNo) { Time t; t.month = monthNo; t.day = dayNo; t.year = yearNo; if ((monthNo == 12) && (dayNo == 24)) t.timeOfDay = 18.00F; else t.timeOfDay = 22.00F; return t; } void processSale (Merchandise &itemSold, Time timeOfSale); { if (timeOfSale.timeOfDay < 8.00) itemSold.price -= EmployeeDiscountPercent*itemSold.price; itemSold.nbrInStock--; itemSold.nbrSoldThisYear++; } CS 150

  6. Classes in C++ • Classes allow for the combining of a data set with a set of functions that work on that data set • This allows for less cumbersome parameter lists, and allows the data better protection from being set to invalid values. CS 150

  7. C++ Classes To enhance modularity and information hiding even further, it would be nice if we could create types for which the internal workings are “private” to the rest of our program, and which can only be accessed or altered by means of specified “public” functions. BankAccount acct; cout >> “Enter interest rate: ”; cin << acct.intRate; BankAccount acct; float rate; cout >> “Enter interest rate: ”; cin << rate; acct.setIntRate(rate);  void BankAccount::setIntRate(float r) { if ((r<=0.0F) || (r>=0.1F)) intRate = 0.01F else intRate = r; return; } Doesn’t prevent rates below 0% or above 10%! Does prevent rates below 0% or above 10%! CS 150

  8. The C++ class C++ provides a class mechanism for defining such types. class BankAccount { public: void setIntRate(float newIntRate); void setBalance(float newBalance); bool checkAcctNbr(string testAcctNbr); bool checkATMCode(string testATMCode); float getIntRate(); float getBalance(); private: void setAcctNbr(string newAcctNbr); void setATMCode(string newATMCode); string getAcctNbr(); string getATMCode(); float intRate; float balance; string acctNbr; string atmCode; }; Prototypes for “public member functions”, which can be used by any function that declares a variable of this type. Prototypes for “private member functions”, which can only be used by the other member functions of this type. “Private data members”, which can only be used by the member functions of this type. CS 150

  9. The Scope Resolution Operator When implementing the member functions, the compiler needs to know that they are members of the class, and are only defined within the context of the object that’s using them. The scope resolution operator, ::, is used to accomplish this. void BankAccount::setIntRate(float newIntRate) { if ((newIntRate < 0.0F) || (newIntRate > 0.1F)) intRate = 0.01F; else intRate = newIntRate; } bool BankAccount::checkATMCode(string testATMCode) { return (atmCode == testATMCode); } string BankAccount::getATMCode() { return atmCode; } CS 150

  10. Working with the Class Members Just like with structures, the dot operator is used to access class members, both data members and member functions. void validateAcctNbr(BankAccount acct, string nbr) { if (accountNumber == nbr) cout << “Account Number Validated”; else cout << “Account Number Invalid! Call the cops!”; } Compilation Error! accountNumber is not a variable in this function! Compilation Error! accountNumber is a private data member of the BankAccount class! void validateAcctNbr(BankAccount acct, string nbr) { if (acct.accountNumber == nbr) cout << “Account Number Validated”; else cout << “Account Number Invalid! Call the cops!”; } void validateAcctNbr(BankAccount acct, string nbr) { if (acct.getAcctNbr() == nbr) cout << “Account Number Validated”; else cout << “Account Number Invalid! Call the cops!”; } Compilation Error! getAcctNbr is a private member function of the BankAccount class! void validateAcctNbr(BankAccount acct, string nbr) { if (acct.checkAcctNbr(nbr)) cout << “Account Number Validated”; else cout << “Account Number Invalid! Call the cops!”; } No problemo! checkAcctNbr is a public member function of the BankAccount class! CS 150

  11. A Complete Example // circleDrawingDriver.cpp // // This program generates circle data and draws them using ASCII characters. // #include <iostream> #include <iomanip> #include <cmath>using namespace std; const float PI = 3.1416F; const int PADDING = 3; const int ASCII_ZERO_VALUE = 48; class Circle { public: Circle(); // Constructor bool setCoordinates(int x, int y); // Mutator functions bool setRadius(int r); bool setASCIICharacter(char ch); float computeArea(); // Member functions float computePerimeter(); void displayCircleAttributes(); void drawCircle(); int getXCoord() const; // Accessor functions int getYCoord() const; int getRadius() const; char getASCIICharacter() const; private: int xCoord; // Data members int yCoord; int radius; char asciiCharacter; }; // Notice the REQUIRED semicolon! “Constructors” create new objects of this class; with no parameters, this one’s known as the “default” constructor, and is called whenever a variable of type Circle is declared. The declaration of the Circle class. Mutator functions allow programmers to change data member values. Regular public member functions; they can be called by any function with a Circle variable. Accessor public member functions; they can access but not alter a Circle object. Private data members; they can only be used by Circle member functions. CS 150

  12. The Circle Example (Continued) ////////////////////////////////////////////////////////////////// // The main function serves as a driver to display a variety of // // circles with a variety of sizes, positions, and characters. // ////////////////////////////////////////////////////////////////// void main() { Circle circ; char YorN; int count = 1; int positionX = 4; int positionY = 2; cout << "Ready for the first circle? (Enter Y or N) "; cin >> YorN; while ((YorN == 'y') || (YorN == 'Y')) { circ.setASCIICharacter(char(ASCII_ZERO_VALUE+count)); circ.setRadius(count+3); circ.setCoordinates(positionX,positionY); circ.displayCircleAttributes(); circ.drawCircle(); cout << "Ready for another circle? (Enter Y or N) "; cin >> YorN; count++; positionX = (positionX + 11) % 13; positionY = (positionY + 13) % 11; } return; } The declaration of a variable of type Circle. Calling some of Circle’s public member functions; note the use of the dot notation. CS 150

  13. The Circle Example (Continued) // This default constructor sets up the data members with default values. // Circle::Circle() { xCoord = yCoord = radius = 0; asciiCharacter = ' '; } // Assign the x- and y- coords of the circle's center with parameterized values. // bool Circle::setCoordinates(int x, int y) { xCoord = x; yCoord = y; return true; } // Assign the radius of the circle the parameterized value. // bool Circle::setRadius(int r) { if(r <= 0) return false; radius = r; return true; } // Assign the fill character of the circle the parameterized value. // bool Circle::setASCIICharacter(char ch) { asciiCharacter = ch; return true; } The Circle’s default constructor initializes the data members; default constructors do not have to do initialization. Notice that the dot operator is not needed to access members inside member functions themselves. CS 150

  14. The Circle Example (Continued) // Compute and return the area of the circle. // float Circle::computeArea() { return PI * radius * radius; } // Compute and return the perimeter of the circle. // float Circle::computePerimeter() { return 2 * PI * radius; } // Output the circle's data member values, as // // well as the area and perimeter of the Circle. // void Circle::displayCircleAttributes() { cout.setf(ios::fixed); cout << setprecision(4); cout << "Center's x-coordinate: " << xCoord << endl; cout << "Center's y-coordinate: " << yCoord << endl; cout << "Circle's radius: " << radius << endl; cout << "Circle's area: " << computeArea() << endl; cout << "Circle's perimeter: " << computePerimeter() << endl; cout << "Circle's fill character: " << asciiCharacter << endl; } Also notice that the dot operator is not needed to access member functions in member functions themselves; the compiler still recognizes that the Circle being operated upon is the one being referred to. CS 150

  15. The Circle Example (Continued) // Output the Circle, using its ASCII character to draw it, // // as well as vertical and horizontal symbols to draw the // // coordinate axes, and an 'X' at the center of the circle. // void Circle::drawCircle() { const int PADDING = 4; const float HEIGHT_WIDTH_RATIO = 1.5F; int lowerX = (xCoord-radius < -PADDING) ? (xCoord-radius-PADDING) : -PADDING; int upperX = (xCoord+radius > PADDING) ? (xCoord+radius+PADDING) : PADDING; int lowerY = (yCoord-radius < -PADDING) ? (yCoord-radius-PADDING) : -PADDING; int upperY = (yCoord+radius > PADDING) ? (yCoord+radius+PADDING) : PADDING; for (int y = upperY; y >= lowerY; y--) { for (int x = int(HEIGHT_WIDTH_RATIO*lowerX); x <= int(HEIGHT_WIDTH_RATIO*upperX); x++) { if ((x == xCoord) && (y == yCoord)) cout << 'X'; else if (pow((x-xCoord)/HEIGHT_WIDTH_RATIO,2) + pow(y-yCoord,2) <= pow(radius,2)) cout << asciiCharacter; else if ((x == 0) && (y == 0)) cout << '+'; else if (x == 0) cout << '|'; else if (y == 0) cout << '-'; else cout << ' '; } cout << endl; } } CS 150

  16. The Circle Example (Continued) // Access and return the Circle's x-coordinate value. // int Circle::getXCoord() const { return xCoord; } // Access and return the Circle's y-coordinate value. // int Circle::getYCoord() const { return yCoord; } // Access and return the value of the Circle's radius. // int Circle::getRadius() const { return radius; } // Access and return the value of the Circle's ASCII fill character. // char Circle::getASCIICharacter() const { return asciiCharacter; } The accessor functions have been set up as constant member functions; this guarantees that calling them will not alter the values of any of the Circle’s data members.. CS 150

  17. The Circle Example (Continued) CS 150

  18. Class Definition and Implementation Files ///////////////////////////////////////////////////////// // circle.h The class definition for the Circle class // ///////////////////////////////////////////////////////// #ifndef CIRCLE_H#include<iostream>using namespace std; class Circle { public: Circle(); // Constructor void setCoordinates(int x, int y); // Member functions void setRadius(int r); void setASCIICharacter(char ch); float computeArea(); float computePerimeter(); void displayCircleAttributes(); void drawCircle(); int getXCoord() const; // Accessor functions int getYCoord() const; int getRadius() const; char getASCIICharacter() const; private: int xCoord; // Data members int yCoord; int radius; char asciiCharacter; }; // Notice the REQUIRED semicolon! #define CIRCLE_H #endif To relieve the programmer from the burden of rebuilding the code associated with a completed class, and to make the class reusable with other driver programs, the class definition is normally placed in a header file and the class implementation is normally placed in a separate program file. The Circle’s class definition file: circle.h CS 150

  19. The Class Implementation File: circle.cpp // Access and return the Circle's x-coordinate value. // int Circle::getXCoord() const { return xCoord; } // Access and return the Circle's y-coordinate value. // int Circle::getYCoord() const { return yCoord; } // Access and return the value of the Circle's radius. // int Circle::getRadius() const { return radius; } // Access and return the value of the Circle's ASCII fill character. // char Circle::getASCIICharacter() const { return asciiCharacter; } // Output the Circle, using its ASCII character to draw it, // // as well as vertical and horizontal symbols to draw the // // coordinate axes, and an 'X' at the center of the circle. // void Circle::drawCircle() { const int PADDING = 4; const float HEIGHT_WIDTH_RATIO = 1.5F; int lowerX = (xCoord-radius < -PADDING) ? (xCoord-radius-PADDING) : -PADDING; int upperX = (xCoord+radius > PADDING) ? (xCoord+radius+PADDING) : PADDING; int lowerY = (yCoord-radius < -PADDING) ? (yCoord-radius-PADDING) : -PADDING; int upperY = (yCoord+radius > PADDING) ? (yCoord+radius+PADDING) : PADDING; for (int y = upperY; y >= lowerY; y--) { for (int x = int(HEIGHT_WIDTH_RATIO*lowerX); x <= int(HEIGHT_WIDTH_RATIO*upperX); x++) { if ((x == xCoord) && (y == yCoord)) cout << 'X'; else if (pow((x-xCoord)/HEIGHT_WIDTH_RATIO,2) + pow(y-yCoord,2) <= pow(radius,2)) cout << asciiCharacter; else if ((x == 0) && (y == 0)) cout << '+'; else if (x == 0) cout << '|'; else if (y == 0) cout << '-'; else cout << ' '; } cout << endl; } } // Assign the fill character of the circle the parameterized value. // void Circle::setASCIICharacter(char ch) { asciiCharacter = ch; return; } // Compute and return the area of the circle. // float Circle::computeArea() { return PI * radius * radius; } // Compute and return the perimeter of the circle. // float Circle::computePerimeter() { return 2 * PI * radius; } // Output the circle's data member values, as // // well as the area and perimeter of the Circle. // void Circle::displayCircleAttributes() { cout.setf(ios::fixed); cout << setprecision(4); cout << "Center's x-coordinate: " << xCoord << endl; cout << "Center's y-coordinate: " << yCoord << endl; cout << "Circle's radius: " << radius << endl; cout << "Circle's area: " << computeArea() << endl; cout << "Circle's perimeter: " << computePerimeter() << endl; cout << "Circle's fill character: " << asciiCharacter << endl; } ///////////////////////////////////////////////////////////////// // circle.cpp The class implementation for the Circle class. // ///////////////////////////////////////////////////////////////// #include <iostream> #include <iomanip> #include <cmath> #include "circle.h“using namespace std;const float PI = 3.1416F;const int PADDING = 3;// This default constructor sets up the data members with default values. //Circle::Circle(){ xCoord = yCoord = radius = 0; asciiCharacter = ' ‘;}// Assign the x- and y- coordinates of the circle's center with parameterized values. //bool Circle::setCoordinates(int x, int y){ xCoord = x; yCoord = y; return true;}// Assign the radius of the circle the parameterized value. //bool Circle::setRadius(int r){ if(r <= 0) return false; radius = r; return true;} CS 150

  20. The Driver File: circleDrawingDriver2.cpp // circleDrawingDriver2.cpp // // This program generates the data for circles and then draws them using ASCII characters. // #include <iostream> #include "circle.h"using namespace std; const int ASCII_ZERO_VALUE = 48; // The main function displays a variety of circles. // void main() { Circle circ; char YorN; int count = 1; int positionX = 4; int positionY = 2; cout << "Ready for the first circle? (Enter Y or N) "; cin >> YorN; while ((YorN == 'y') || (YorN == 'Y')) { circ.setASCIICharacter(char(ASCII_ZERO_VALUE+count)); circ.setRadius(count+3); circ.setCoordinates(positionX,positionY); circ.displayCircleAttributes(); circ.drawCircle(); cout << "Ready for another circle? (Enter Y or N) "; cin >> YorN; count++; positionX = (positionX + 11) % 13; positionY = (positionY + 13) % 11; } return; } CS 150

  21. An Alternative Driver //////////////////////////////////////////////////// // diagonalDotDriver.cpp // // This program generates same-sized circles that // // are displayed at a diagonal to each other. // //////////////////////////////////////////////////// #include <iostream> #include "circle.h"using namespace std; //////////////////////////////////////////////////////// // The main function drives the diagonal dot display. // //////////////////////////////////////////////////////// void main() { Circle circ; circ.setASCIICharacter('O'); circ.setRadius(4); for (int i = 0; i < 40; i += 8) { circ.setCoordinates(i,0); circ.drawCircle(); } return; } Note that this driver requires no changes to the definition of the Circle class! CS 150

  22. Constructors There are three basic types of constructors in C++ programming. Circle::Circle() { xCoord = yCoord = radius = 0; asciiCharacter = ' '; } Default Constructor Called when a new variable of this type is declared. (Only one allowed.) Circle::Circle() { } Circle::Circle(int x, int y, int r, char ch) { xCoord = x; yCoord = y; radius = r; asciiCharacter = ch; } Initializing Constructor Called when variable of this type is having some or all of its data member values initialized. (More than one allowed.) Circle::Circle(char ch) { asciiCharacter = ch; } Circle::Circle(const Circle &c) { xCoord = c.xCoord; yCoord = c.yCoord; radius = c.radius; asciiCharacter = c.asciiCharacter; } Copy Constructor Called when a variable of this type is passed by value to a function. (Only one allowed.) Note that constructors always have the same name as the class. CS 150

  23. Calling the Constructors Default Constructor Don’t call it with the empty parentheses; the compiler might conclude that this is a prototype! void main() { Circle roundo;  } void main() { Circle C1(3,-2,7,’$’); C2 = Circle(’!’);  } Initializing Constructor As long as the parameter lists differ in type, the compiler won’t get confused. void main() { Circle bigArc;  smileyFace(bigArc);  }  void smileyFace(Circle button) {  } Copy Constructor You might be able to pass by value without one, but the results would be unpredictable. CS 150

  24. Abstract Data Types To what extent does a programmer need to know the implementation of the Circle class in order to use it in a driver? Does the programmer need to know the types of the data members in order to use the constructors? Perhaps with that initializing constructor... Does the programmer need to know how the area and perimeter are being computed? Nope! Does the programmer need to know the types of the data members in order to set them or access them? Well, yeah... Does the programmer need to know anything about the data members in order to draw the circle or display its attributes? Not really... If the programmers who use a data type don’t have to know how its members are implemented, then it’s considered an abstract data type. CS 150

  25. Advantages of ADTs By limiting the required understanding of the class to the public members, modifiability, readability, and reusability are all enhanced! Object-Oriented Emphasis on what is being done Procedural Emphasis Upon How To Do Things CS 150

  26. Achieving ADT Status in C++ Private Members Only! (At least, private data members only!) Basic Public Broadcasting! (That is, use public member functions for only basic operations, and ensure that users know how to use them!) Show A Little Class! (Put your class definition and your class implementation in separate .h and .cpp files!) CS 150

More Related