1 / 91

8 Memory Subsystem

Contents. 8 Memory Subsystem. 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier. 4. PLA 5. Gate Matrix 6. ROM. 1. Classification. RWM(Read-Write Memory) Random Access : SRAM, DRAM Sequential Access : FIFO, Stack(LIFO)

kelli
Download Presentation

8 Memory Subsystem

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Contents 8 Memory Subsystem 1. Classification 2. Architectures 3. Circuits 1) SRAM 2) DRAM 3) Address decoders 4) Sense Amplifier 4. PLA 5. Gate Matrix 6. ROM

  2. 1. Classification • RWM(Read-Write Memory) • Random Access : SRAM, DRAM • Sequential Access : FIFO, Stack(LIFO) • Content Access : CAM(Associative Memory) • NVRWM(Nonvolatile RWM) • EPROM • E2PROM • FLASH • ROM • Mask Programmed • OTP(One-Time Programmable) ; PROM

  3. 2. Architectures • 1-dimensional memory : N(words)  M(bits/word) • Decoder reduces the number of wires

  4. 2-dimensional array structure uses column decoder to make the chip square.

  5. Hierarchical memory architecture using block address • Block address is used to activate only one block. Other blocks(nonactive) are put in power-saving mode.

  6. Architecture of large memory

  7. Basic organization for a 4K SRAM(1989 Philips research).

  8. Schematic circuit diagram of 64K SRAM(Hitachi 1982).

  9. Another schematic of SRAM(column grouping). SRAM chip block diagram

  10. Design Considerations • bit line precharge, sense amp enable 등을 위한 모든 clock의 발생은 address, CS, WE 등 신호의 transition을 detect하는 회로에 의해 internal clock 발생기가 trigger 됨으로써 이루어진다.(전력소모 억제) • 2-stage row address decoding : WL driver decodes A1. • Sense amp는 column switch 앞에, 혹은 뒤에 놓을 수 있다. 앞에 놓을 경우 : column의 cell pitch에 맞추기 위해 아주 simple한 SA를 사용 뒤에 놓을 경우 : 상대적으로 복잡한 SA 사용가능(SA의 input cap.는 증가 • 윗 그림은 column을 (1024 column의 경우, by 4 인 경우) 크게 4로 나누고, 각각을 16으로 나누어 각 소 group의 16개의 column을 한 SA가 담당토록하는 compromise 임.

  11. 3. Circuits • Address decoders • Single stage(10-to-1024) decoder i) # of transistors = 20/NAND 10  1024 = 20,480 ii) Large fanout requirement on buffers generating Xi’s. iii) series-connected transistors limit discharge time.

  12. Predecoded scheme i) Group 2 bits and predecode the word using 2-bit segments ; (X9, X8), (X7, X6), …. (X1, X0) ii) 2nd-stage decoder logic # of transistors ; 10/NAND 5  1024 +   12,000

  13. Divided Word Line architecture Global word line selects a block, while the local line is used to activate a word line within the selected block.

  14. Hierarchical word decoding logic

  15. Row decoder circuits (Complementary AND, pseudo NMOS, cascade NAND)

  16. Typical Symbolic Layout Style of row decoders

  17. Various other decoder circuits(Power saving, Decoder-powered)

  18. Tree style column decoder

  19. Sense Amplifier for SRAM • Single differential stage의 전압이득 Av = gm·ro gm : current/voltage(transducer gain) of M1, M2 ro : output impedance( = ro M1 ro M2) • Av가 크기 위해서는 M1과 P1(M2와 P2)가 모두 saturation 영역에 있어야 함. ( Sat. 영역에서 gm= 가 크고, ro도 크기때문) • 따라서 point X의 전압을 로 precharge해 두는 것이 response time을 짧게 하고, signal swing을 크게하는데 유리. 

  20. Single-ended amp를 두개 symmetric하게 연결함으로써 voltage gain을 높인다. (다음 단에 latch나 another double-ended amp. Stage 혹은 diff. Input을 갖는 output buffer를 달면 된다.)

  21. SA의 출력점을 로 충전하여 SA의 high-gain 영역에서 동작토록하는 회로. 1 : V1은 VDD로 prech 됨 power-down 상태 2 : WL이 access되면 V1을 로 prech. 3 : BL, BL에 전압차가 생기면 high-gain SA 동작하면서 column decoder/switch인 pass gate가 동작 data output bus로 신호전달 4 : power-down 상태 • SRAM sense amp precharged to

  22. 2차구간에서 Static 전력소모가 있음

  23. SRAM circuit before sense Amp.

  24. Evolution of SRAM cells i) 6- and 4-transistor SRAM cells

  25. ii) Dual-port/double-ended access and dual-port/single access

  26. iii) Content-addressable memory cell

  27. Evolution of DRAM cells (a) basic bi-stable f/f w/o load (b) 2C-2D(C:control lines, D:data lines)

  28. ( c) 1C-2D (d) 2C-1D scheme

  29. (e) 1C-1D (f) 1C-1D(industry standard DRAM)

  30. DRAM read cycle

  31. Dummy word line scheme

  32. DRAM differential sense amp with dummy cell structure

  33. Cross-coupled Latch Assume node 1 & 2 are precharged, and node 2 begins to drop. When clk is on, node 3 pulls down. N2 strongly turns on, leaving n1 off. 주의) cross-coupled TR pair 의 layout이 대칭이어야 함. threshold 전압차이에 의한 영향

  34. Charge transfer-based Circuit

  35. Charge-transfer Circuit(cont’d) • Operation Sequence  As clk goes high, node 1 & 2 are precharged; V1 (Vref-Vth,n2), V2 min(VDD, Vclk-Vth, n3) > Vref  n3 turns off.  Cell(n1, Cc) is selected(Assume Vc was ‘0’) Due to charge sharing between Cc & Clarge, V1 becomes  n2 is turned on until is transferred from Cout .i.e., until V1 reaches Vref-Vth. Voltage drop at node 2 due to charge transfer is  : amplif. factor

  36. Sense amplifier for single - Tr. DRAM cells. dummy cell(Cd=Cc), dummy bit line complete Symmetry

  37. Operation 1. Precharge 전에는 BL, DBL 모두 로 되어 있다.* precharge(n1, n2 on)를 통해 node 1,2가 pull up 된다. 그리고 n1과 n2는 off된다. 2. Cc와 Cd가 select 되어 charge transfer에 의해 ( =0라 하자) node 1의 전압은 node 2의 전압보다 많이 강하 된다. ( Cd는 로 충전되어 있었기 때문)* 3. Clk1이 high가 되어 n4는 on, n5는 off(V1은 Vss로 됨) n7이 다시 conduction 되어 BL이 Vss로 방전되어 Cc가 ‘0’으로 restore 된다. 4. Sel ‘0’로 하여 Cc를 isolate 한 후에 clk2를 on하여 BL과 DBL을 로 함. 그 후에 seld ‘0’ 하여 Cd에 를 만들고 n3를 off 시킴. (Cc에 ‘1’이 저장되어 있는 경우도 비슷한 방식으로 동작한다.) 

  38. Column SA와 main SA를 사용한 SRAM SA 회로 매 column마다 n개의 colunm간에 multiplex

  39. (input 신호) (Column SA가 있는 경우)

  40. (Column SA가 없는 경우)

  41. Resistive-load SRAM cells • Undoped polysilicon as resistors with R 1 / • Just enough(10-12A) to compensate for leakage current of 10-15A • BL & BL precharged to VDD, thus preventing slow charging of BL, BL.

  42. TFT SRAM cell • Instead of traditional PMOS devices, pull-up transistors realized by PMOS TFT(thin-film transistor) on top of the cell structure. • ON current : 10-8A, OFF current : 10-13A Complementary CMOS Resistive Load TFT cell Number of transistors 6 4 4(+2 TFT) Cell size 58.2m2 (0.7 m rule) 40.8 m2 (0.7 m rule) 41.1m2 (0.8 m rule) Standby current(per cell) 10-15A 10-12A 10-13A

  43. Bipolar SRAM cells : • Very fast SRAMs are necessary for cache & microcode memory in high-speed computers. • SBD(Schottky Barrier Diode) bipolar SRAM

  44. 3-T DRAM cell : • Resulted by removing the loads to obtain 4-T DRAM cell and further removing redundemt complementary pull down device • Separate Read Word line(RWL) & Write word line(WWL) • Refreshing by writing the inverted BL2 signal onto BL1.

  45. 1-T DRAM cell : : charge transfer ratio

  46. 1-T DRAM cell structure :

  47. Trench capacitor type & Stacked-capacitor type

More Related