Revision Exercise
This presentation is the property of its rightful owner.
Sponsored Links
1 / 11

Revision Exercise PowerPoint PPT Presentation


  • 63 Views
  • Uploaded on
  • Presentation posted in: General

Revision Exercise. Hexadecimal Number System. Hexadecimal System. 16 different values possible: 0 1 2 3 4 5 6 7 8 9 A B C D E F (0 – 9) (10 11 12 13 14 15) A to F represent numbers 10 to 15 Base 16 E.g. C4 16. Binary to Hexadecimal Conversion.

Download Presentation

Revision Exercise

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Revision exercise

Revision Exercise


Hexadecimal number system

Hexadecimal Number System


Revision exercise

Hexadecimal System

  • 16 different values possible:

    • 0 1 2 3 4 5 6 7 8 9 A B C D E F

      (0 – 9) (10 11 12 13 14 15)

    • A to F represent numbers 10 to 15

  • Base 16

  • E.g. C416


Revision exercise

Binary to Hexadecimal Conversion

Q: Convert 011011102 to hexadecimal.

A:

8

4

2

1

8

4

2

1

0

1

1

0

1

1

1

0

4 + 2

8 + 4 + 2

6

14 = E

6E16


Revision exercise

Hexadecimal to Binary Conversion

Q: Convert C416 to binary.

A:

8

4

2

1

8

4

2

1

1

1

0

0

0

1

0

0

2

8 + 4

4

C = 12

C416


Revision exercise

  • Decimal to Hexadecimal Example 1

  • Q: Convert 4110 to hex

    A:

16

41

16

2

Remainder 9

0

Remainder 2

Ans: 4110 = 2916


Revision exercise

  • Decimal to Hexadecimal Example 2

  • Q: Convert 10910 to hex

    A:

16

109

16

6

Remainder 13

0

Remainder 6

Ans: 10910 = 6 1316

= 6 D16


Revision exercise

  • Hexadecimal to Decimal Example 1

  • Q: Convert 3C16 to decimal

    A:

161

160

  • Step 1: Place Values

3

C

  • Step 2: Multiply by place value

(3 x 16) + (C x 1)

  • Step 3: Hex value for letters

(3 x 16) + (12 x 1)

  • Step 4: Add values

48 + 12

6010


Revision exercise

  • Hexadecimal to Decimal Example 2

  • Q: Convert 1F16 to decimal

    A:

161

160

  • Step 1: Place Values

1

F

  • Step 2: Multiply by place value

(1 x 16) + (C x 1)

  • Step 3: Hex value for letters

(1 x 16) + (15 x 1)

  • Step 4: Add values

16 + 15

3110


Revision exercise

  • Decimal to Hexadecimal Short Method

Q: Convert 13910 to hexadecimal.

A:

  • convert 13910 to binary

    • 13910 100010112

  • convert from 100010112 to hexadecimal.

    • 100010112

8B16


Revision exercise

  • Hexadecimal to Decimal Short Method

Q: Convert 1F16 to decimal.

A:

  • convert 1F16 to binary

    • 1F16 000111112

  • convert from 000111112 to decimal.

    • 000111112

3110


  • Login