1 / 78

Physical Media

physical link: transmitted data bit propagates across link guided media: signals propagate in solid media: copper, fiber unguided media: signals propagate freely, e.g., radio. Twisted Pair (TP) two insulated copper wires Category 3: traditional phone wires, 10 Mbps ethernet

kadeem
Download Presentation

Physical Media

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. physical link: transmitted data bit propagates across link guided media: signals propagate in solid media: copper, fiber unguided media: signals propagate freely, e.g., radio Twisted Pair (TP) two insulated copper wires Category 3: traditional phone wires, 10 Mbps ethernet Category 5 TP: 100Mbps ethernet Physical Media

  2. Coaxial cable: wire (signal carrier) within a wire (shield) baseband: single channel on cable broadband: multiple channel on cable bidirectional common use in 10Mbs Ethernet Physical Media: coax, fiber Fiber optic cable: • glass fiber carrying light pulses • high-speed operation: • 100Mbps Ethernet • high-speed point-to-point transmission (e.g., 5 Gps) • very low error rate

  3. signal carried in electromagnetic spectrum no physical “wire” bidirectional propagation environment effects: reflection obstruction by objects interference Physical media: radio Radio link types: • microwave • e.g. up to 45 Mbps channels • LAN (e.g., waveLAN) • 2Mbps, 11Mbps • wide-area (e.g., cellular) • e.g. CDPD, 10’s Kbps • satellite • up to 50Mbps channel (or multiple smaller channels) • 270 Msec end-end delay • geosynchronous versus LEOS (low earth orbit)

  4. Our goals: understand principles behind data link layer services: error detection, correction sharing a broadcast channel: multiple access link layer addressing instantiation and implementation of various link layer technologies Overview: link layer services error detection, correction multiple access protocols and LANs link layer addressing specific link layer technologies: Ethernet The Data Link Layer

  5. Link Layer: setting the context

  6. M H H H H H H H H H t n l t t n l t n M M application transport network link physical M Link Layer: setting the context • two physically connected devices: • host-router, router-router, host-host • unit of data: frame network link physical data link protocol M frame phys. link adapter card

  7. Link Layer Services • Framing, link access: • encapsulate datagram into frame, adding header, trailer • implement channel access if shared medium, • ‘physical addresses’ used in frame headers to identify source, destination • different from IP address! • Reliable delivery between two physically connected devices: • seldom used on low bit error link (fiber, some twisted pair) • wireless links: high error rates

  8. Link Layer Services (more) • Flow Control: • pacing between sender and receivers • Error Detection: • errors caused by signal attenuation, noise. • receiver detects presence of errors: • signals sender for retransmission or drops frame • Error Correction: • receiver identifies and corrects bit error(s) without resorting to retransmission

  9. M H H H H H H H H H t n l t t n l t n M M application transport network link physical M Link Layer: Implementation • implemented in “adapter” • e.g., PCMCIA card, Ethernet card • typically includes: RAM, DSP chips, host bus interface, and link interface network link physical data link protocol M frame phys. link adapter card

  10. Error Detection • EDC= Error Detection and Correction bits (redundancy) • D = Data protected by error checking, may include header fields • Error detection not 100% reliable! Q: why? • protocol may miss some errors, but rarely • larger EDC field yields better detection and correction

  11. Two Dimensional Bit Parity: Detect and correct single bit errors Single Bit Parity: Detect single bit errors 0 0 Parity Checking

  12. Sender: treat segment contents as sequence of 16-bit integers checksum: addition (1’s complement sum) of segment contents sender puts checksum value into UDP checksum field Receiver: compute checksum of received segment check if computed checksum equals checksum field value: NO - error detected YES - no error detected. But maybe errors nonetheless? Internet checksum Goal: detect “errors” (e.g., flipped bits) in transmitted segment (note: used at transport layer only)

  13. Checksumming: Cyclic Redundancy Check • view data bits, D, as a binary number • choose r+1 bit pattern (generator), G • goal: choose r CRC bits, R, such that • <D,R> exactly divisible by G (modulo 2) • receiver knows G, divides <D,R> by G. If non-zero remainder: error detected! • can detect all burst errors less than r+1 bits • widely used in practice (ATM, HDCL)

  14. CRC Example Want: D.2r XOR R = nG equivalently: D.2r = nG XOR R equivalently: if we divide D.2r by G, want reminder R D.2r G R = remainder[ ]

  15. Multiple Access Links and Protocols Three types of “links”: • point-to-point (single wire, e.g. PPP, SLIP) • broadcast (shared wire or medium; e.g, Ethernet, Wavelan, etc.) • switched (e.g., switched Ethernet, ATM etc)

  16. Contexts

  17. Contexts

  18. Multiple Access protocols • single shared communication channel • two or more simultaneous transmissions by nodes: interference • only one node can send successfully at a time • multiple access protocol: • distributed algorithm that determines how stations share channel, i.e., determine when station can transmit • communication about channel sharing must use channel itself! • what to look for in multiple access protocols: • synchronous or asynchronous • information needed about other stations • robustness (e.g., to channel errors) • performance

  19. MAC Protocols: a taxonomy Three broad classes: • Channel Partitioning • divide channel into smaller “pieces” (time slots, frequency) • allocate piece to node for exclusive use • Random Access • allow collisions • “recover” from collisions • “Taking turns” • tightly coordinate shared access to avoid collisions Goal: efficient, fair, simple, decentralized

  20. MAC Protocols: Goal • Channel Rate = R bps • Efficient: • Single user:Throughput R • Fairness • N users • Min. user throughput R/N • Decentralized • Fault tolerance • Simple

  21. The parameter ‘a’ • The number of packets sent by a source before the farthest station receives the first bit

  22. Base technologies • Isolates data from different sources • Three basic choices • Frequency division multiple access (FDMA) • Time division multiple access (TDMA) • Code division multiple access (CDMA)

  23. FDMA • Simplest • Best suited for analog links • Each station has its own frequency band, separated by guard bands • Receivers tune to the right frequency • Number of frequencies is limited • reduce transmitter power; reuse frequencies in non-adjacent cells • example: voice channel = 30 KHz • 833 channels in 25 MHz band

  24. TDMA • All stations transmit data on same frequency, but at different times • Needs time synchronization • Pros • users can be given different amounts of bandwidth • mobiles can use idle times to determine best base station • can switch off power when not transmitting • Cons • synchronization overhead

  25. CDMA • Users separated both by time and frequency • Send at a different frequency at each time slot (frequency hopping) • Or, convert a single bit to a code (direct sequence) • receiver can decipher bit by inverse process • Pros • hard to spy • immune from narrowband noise • no need for all stations to synchronize • no hard limit on capacity of a cell • all cells can use all frequencies

  26. CDMA • Cons • implementation complexity • need for a large contiguous frequency band (for direct sequence)

  27. FDD and TDD • Two ways of converting a wireless medium to a duplex channel • In Frequency Division Duplex, uplink and downlink use different frequencies • In Time Division Duplex, uplink and downlink use different time slots

  28. Outline • Contexts for the problem • Choices and constraints • Performance metrics • Base technologies • Centralized schemes • Distributed schemes

  29. Channel Partitioning MAC protocols: TDMA TDMA: time division multiple access • access to channel in "rounds" • each station gets fixed length slot (length = pkt trans time) in each round • unused slots go idle • example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle • TDM (Time Division Multiplexing): channel divided into N time slots, one per user; inefficient with low duty cycle users and at light load. • FDM (Frequency Division Multiplexing): frequency subdivided.

  30. Channel Partitioning MAC protocols: FDMA FDMA: frequency division multiple access • channel spectrum divided into frequency bands • each station assigned fixed frequency band • unused transmission time in frequency bands go idle • example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle • TDM (Time Division Multiplexing): channel divided into N time slots, one per user; inefficient with low duty cycle users and at light load. • FDM (Frequency Division Multiplexing): frequency subdivided. time frequency bands

  31. TDMA & FDMA: Performance • Channel Rate = R bps • Single user • Throughput R/N • Fairness • Each user gets the same allocation • Depends on maximum number of users • Decentralized • Requires division • Simple

  32. Random Access protocols • When node has packet to send • transmit at full channel data rate R. • no a priori coordination among nodes • two or more transmitting nodes -> “collision”, • random access MAC protocol specifies: • how to detect collisions • how to recover from collisions (e.g., via delayed retransmissions) • Examples of random access MAC protocols: • slotted ALOHA • ALOHA • CSMA and CSMA/CD

  33. Slotted Aloha • time is divided into equal size slots (= pkt trans. time) • node with new arriving pkt: transmit at beginning of next slot • if collision: retransmit pkt in future slots with probability p, until successful. Success (S), Collision (C), Empty (E) slots

  34. At best: channel use for useful transmissions 37% of time! Slotted Aloha efficiency Q: what is max fraction slots successful? A: Suppose N stations have packets to send • each transmits in slot with probability p • prob. successful transmission S is: by single node: S= p (1-p)(N-1) by any of N nodes S = Prob (only one transmits) = N p (1-p)(N-1) … choosing optimum p as N -> infty ... = 1/e = .37 as N -> infty

  35. Pure (unslotted) ALOHA • unslotted Aloha: simpler, no synchronization • pkt needs transmission: • send without awaiting for beginning of slot • collision probability increases: • pkt sent at t0 collide with other pkts sent in [t0-1, t0+1]

  36. 0.4 0.3 Slotted Aloha protocol constrains effective channel throughput! 0.2 0.1 Pure Aloha 1.5 2.0 0.5 1.0 G = offered load = Np Pure Aloha (cont.) P(success by given node) = P(node transmits) . P(no other node transmits in [t0-1,t0] . P(no other node transmits in [t0,t0+1] = p . (1-p)N-1 . (1-p)N-1 P(success by any of N nodes) = N p . (1-p)N-1 . (1-p)N-1 … choosing optimum p as N -> infty ... = 1/(2e) = .18 S = throughput = “goodput” (success rate)

  37. Aloha: Performance • Channel Rate = R bps • Single user • Throughput R ! • Fairness • Multiple users • Combined throughput only 0.37*R • Decentralized • Slotted needs slot synchronization • Simple

  38. CSMA: Carrier Sense Multiple Access) CSMA: listen before transmit: • If channel sensed idle: transmit entire pkt • If channel sensed busy, defer transmission • Persistent CSMA: retry immediately with probability p when channel becomes idle (may cause instability) • Non-persistent CSMA: retry after random interval • human analogy: don’t interrupt others!

  39. CSMA collisions spatial layout of nodes along ethernet collisions can occur: propagation delay means two nodes may not yet hear each other’s transmission collision: entire packet transmission time wasted note: role of distance and propagation delay in determining collision prob.

  40. CSMA/CD (Collision Detection) CSMA/CD: carrier sensing, deferral as in CSMA • collisions detected within short time • colliding transmissions aborted, reducing channel wastage • persistent or non-persistent retransmission • collision detection: • easy in wired LANs: measure signal strengths, compare transmitted, received signals • difficult in wireless LANs: receiver shut off while transmitting

  41. CDMA/CD • Channel Rate = R bps • Single user • Throughput R • Fairness • Multiple users • Depends on Detection Time • Decentralized • Completely • Simple • Needs collision detection hardware

  42. “Taking Turns” MAC protocols channel partitioning MAC protocols: • share channel efficiently at high load • inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node! Random access MAC protocols • efficient at low load: single node can fully utilize channel • high load: collision overhead “taking turns” protocols look for best of both worlds!

  43. Token passing: • control token passed from one node to next sequentially. • token message • concerns: • token overhead • latency • single point of failure (token) “Taking Turns” MAC protocols Polling: • master node “invites” slave nodes to transmit in turn • Request to Send, Clear to Send msgs • concerns: • polling overhead • latency • single point of failure (master)

  44. Summary of MAC protocols • What do you do with a shared media? • Channel Partitioning, by time, frequency or code • Time Division,Code Division, Frequency Division • Random partitioning (dynamic), • CSMA, CSMA/CD • carrier sensing: easy in some technologies (wire), hard in others (wireless) • CSMA/CD used in Ethernet • Taking Turns • polling from a central cite, token passing

  45. Performance metrics • Normalized throughput • fraction of link capacity used to carry non-retransmitted packets • example • with no collisions, 1000 packets/sec • with a particular scheme and workload, 250 packets/sec • => goodput = 0.25 • Mean delay • amount of time a station has to wait before it successfully transmits a packet • depends on the load and the characteristics of the medium

  46. Performance metrics • Stability • with heavy load, is all the time spent on resolving contentions? • => unstable • with a stable algorithm, throughput does not decrease with offered load • if infinite number of uncontrolled stations share a link, then instability is guaranteed • but if sources reduce load when overload is detected, can achieve stability • Fairness • no single definition • ‘no-starvation’: source eventually gets a chance to send

  47. Centralized access schemes • One station is master, and the other are slaves • slave can transmit only when master allows • Natural fit in some situations • wireless LAN, where base station is the only station that can see everyone • cellular telephony, where base station is the only one capable of high transmit power

  48. Centralized access schemes Circuit mode • When station wants to transmit, it sends a message to master using packet mode • Master allocates transmission resources to slave • Slave uses the resources until it is done • No contention during data transfer • Used primarily in cellular phone systems

  49. Centralized access schemes Polling • Centralized packet-mode multiple access schemes • Polling • master asks each station in turn if it wants to send (roll-call polling) • inefficient if only a few stations are active, overhead for polling messages is high, or system has many terminals

  50. Centralized access schemes Reservation-based schemes • When ‘a’ is large(mainly for satellite links), can’t use a distributed scheme for packet mode (too many collisions) • Instead master coordinates access to link using reservations • Some time slots devoted to reservation messages • can be smaller than data slots => minislots • Stations contend for a minislot (or own one) • Master decides winners and grants them access to link • Packet collisions are only for minislots, so overhead on contention is reduced

More Related