1 / 61

In the name of GOD

In the name of GOD. Chapter 1 Basic Ultrasound Physics. Tavakoli. M.B, Isfahan University of Medical Sciences, School of Medicine Department of Medical Physics and Medical Engineering. بنام خدا. نام و شماره درس : فراصوت و كاربرد آن تعداد و نوع واحد : سه واحد نظري

jneeley
Download Presentation

In the name of GOD

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. In the name of GOD Chapter 1 Basic Ultrasound Physics Tavakoli. M.B, Isfahan University of Medical Sciences, School of Medicine Department of Medical Physics and Medical Engineering

  2. بنام خدا • نام و شماره درس:فراصوت و كاربرد آنتعداد و نوع واحد:سه واحد نظري • گروه سرويس دهنده:گروه فيزيك و مهندسي پزشكي گروه سرويس گيرنده:گروه فيزيك • رشته و مقطع تحصيلي:روز و ساعت • محل برگزاري:گروه فيزيك و مهندسي‌پزشكي • سال تحصيلي: • نام مدرس:دكتر محمدباقر توكلي • آدرس دفتر:دانشكده پزشكي – گروه فيزيك و مهندسي پزشكي mbtavakoli@mui.ac.ir Email: • هدف كلي درس:آشنائي با مباني و اصول فراصوت و كاربرد آن در پزشكي • اهداف اختصاصي: • -1 آشنايي با مباني فيزيكي التراسوند • -2آشنايي با سيستم‌هاي التراسونيكي • -3 آشنايي با روشهاي تكنيكي التراسونيكي • -4آشنايي با اثرات بيولوژيكي التراسوند • برنامه درسي در هر جلسه: • جلسه اول:اصول فيزيكي صوت و التراسوند • جلسه دوم: پراكنش و تضعيف التراسوند در مواد • جلسه سوم:ساختمان ترانسدوسر و ويژگي‌هاي ترانسدوسرها • جلسه چهارم: روشهاي ايجاد تصوير بطريقه استاتيك • جلسه پنجم: روشهاي تصويرگيري real time • جلسه ششم: روشهاي تصويرگيري real time • جلسه هفتم: پروسس تصوير و عوامل مؤثر در كيفيت آن • جلسه هشتم: آرتي‌فكت ها در سونوگرافي • جلسه نهم: اصول فيزيكي روش داپلر • جلسه دهم:‌ ارزيابي تصاوير داپلر

  3. جلسه ياازدهم: روش M-Mode • جلسه دوازدهم: مواد حاجب در التراسوند • جلسه سيزدهم: اثرات بيولوژيكي • جلسه چهاردهم:ملاحظات كلينيكي • جلسه پانزدهم: كنترل كيفي و ارزيابي سيستم‌هاي التراسونيكي • جلسه شانزدهم: دستگاههاي درماني فراصوتي • منابع اصلي درس: • 1- Headrick et al , Ultrasound Physics and Instrumentation, Diagnostic • 2- Fish P.S Physics and Instrumentation of Medical Ultrasound, Tohn Willy and Sons • 3- Bushong SC and Archer BR. Diagnostic Ultrasound Physics, Biology and Instrumentation, Mosby, Yearbook, London • -4روشهاي پيشرفته تصويربرداري ، دكتر محمدباقر توكلي ، انتشارات دانشگاه علوم پزشكي • نحوه ارزشيابي: • الف) حضور در كلاس و انجام تكاليف كلاسي و شركت درمباحث كلاس 2 نمره • ب) امتحان ميان ترم 8 نمره • ج ) امتحان پايان ترم 10 نمره

  4. Basic Ultrasound Physics continue • Sound Wave: Is a type of mechanical energy that is transmitted through medium. • Propagation: Sound wave propagate through deformation of the elastic medium • Sound wave spectrum: Is divided into three region ofInferasound(f<20Hz); Sound (f=20 to 20000Hz) and Ultrasound (f>20kHz) • Wave equation: A=A0sin (ωt+θ) A=amplitude; A0=Maximum amplitude; θ=initial phase and ω =2пf f=1/T

  5. Basic Ultrasound Physics continue • Types of sound wave: • Longitudinal • Shear wave • Compressibility: The fractional decrease in volume when pressure applied to the material. • Bulk modulus=-stress/strain • The reciprocal of compressibility is bulk modulus • β(bulk modulus)=1/ K (compressibility of medium)

  6. Sound velocity • Sound velocity • c(m./sec)=f(1/sec or Hz)λ(m) • Sound velocity depends on compressibility (K) • c=1/(Kρ)1/2=(β/ ρ)1/2 In materials with higher compressibility velocity of sound is less and Vic versa

  7. Typical values for diagnostic ultrasound: • Ultrasound f > 20KHz • f : 1 to 10 MHz • λ : 1.5 to 0.15 mm in muscle • I (Acoustic Intensity)< • Acoustic Pressure P<0.57 bar • Units : Pascal (Pa) 1Pa=1N/M2=10μbar • Particle velocity v<3.5 cm/s • Elongation ξ < 2*10-6 • Particle acceleration < 7*104 g

  8. Acoustic Impedance • Z is the acoustic impedance • Acoustic Pressure: P=Zv • It can be show that

  9. Interaction of ultrasound with tissue • Reflection • Refraction • Diffraction • Scatter • Absorption

  10. Reflection • According to Snell laws • 1-Incident and reflected angles are equal αi =θr • 2-the relation between incident and transmission angles is: Sinαi/ Cosαt=c1/c2 • 3-All of the incident reflection and transmitted rays are in the same plane • Energy transmission and reflection percentages are:

  11. For specular reflection: Amplitude reflection coefficient r : • Energy transmitted and reflection coefficient t : The continuity condition is: R+T=1

  12. Scattering Is = Intensity of scattered sound σ = Scattering cross section When a<λ then Rayleigh scattering=>Iαf2 to f6

  13. Refraction Sinαi/ Cosαt=c1/c2

  14. Diffraction • Diffraction cause ultrasound beam to diverge • The rate of divergence increase with diameter of the source

  15. Interference • Sound wave demonstrate interference phenomena • If they are in phase and with the same frequencies=>instructive effect • If they are out of phase and or with different frequencies=>destructive effect

  16. Absorption • The only process that sound energy dissipate in medium • Factors influencing absorption: • Frequency of the sound • Viscosity of the medium • Relaxation time of the medium

  17. Absorption Jz=J0e-2βz J= ultrasonic intensity at depth z J0= ultrasonic intensity at depth0 β = absorption coefficient in Np/cm • Attenuation coefficient=α=2 β • α attenuation coefficient in dB

  18. In biological tissue usually • β0= 0absorption coefficient at f0(1 MHz) • Relative absorption attenuation usually given by

  19. Spectrum • Displaced of particle around the rest position mechanical phenomena v= velocity of motion ξ = elongation Basic Physics • Acoustic pressure : difference between pressure at any line and normal state Units : Pascal (Pa) 1Pa=1N/M2=10μbar

  20. Propagation velocity = C E = modulus of elasticity ρ = density of rest • C =λf • Acoustic Pressure: P=Zv • It can be show that

  21. For a particular particle velocity, the greater impedance, the greater the acoustic pressure that has to be generated. • Power Density : Infautaneous power passing through a unit area is :

  22. Typical values for diagnostic ultrasound: • Ultrasound f > 20KHz • f : 1 to 10 MHz • λ : 1.5 to 0.15 mm in muscle • J (Acoustic Intensity)< • Acoustic Pressure P<0.57 bar • Particle velocity v<3.5 cm/s • Elongation ξ < 2*10-6 • Particle acceleration < 7*104 g

  23. Wave equation and the plane wave For a plan wave using Newton’s second low for a mass m and spring force k(z) and k(z+Δz) :

  24. Wave equation and the plane wave

  25. Wave equation and the plane wave

  26. Wave equation and the plane wave

  27. Physical effects • Reflection • Refraction • Diffraction • Scatter • Absorption

  28. Reflection The continuity condition is:

  29. Refraction • Diffraction

  30. Scattering Pa = Intensity of scattered sound σ = Scattering cross section

  31. Transmission For dynamic case in the region of resonance frequencies Kτ=0.5 for good transducer

  32. Transducer factors • k = Electromechaanical coupling coefficient • h = Transmission coefficient • g = Reception coefficient k=hg • ε = Dielectric constant • depends on electric and mechanical properties of transducer. It is important in strain of the transducer. • Transducer sensitivity depend of reception coefficient and strain and ε.

  33. Matching layer • Zω(matching layer impedance)=antilog • Thickness = m λ/4 • Quality factor (Q)

  34. Acoustic beam : must be as narrow as possible with sharp fall off at the edges • The intensity in front of a piston transducer • Sound pressure from each element interfere with each other • Make a near field ( Fernel zone) and far field ( Franhofer zone) at boundary Z=a2/λ • Beam angle at the boundary • Natural focus ( between far and near field) at Zf with focal diameter df

  35. Image limitation • Penetration depth • Signal dynamic • Special resolution

  36. Ultrasonic technique • Pulse echo • Real time • A-scan • B-scan • M-mode • Doppler

  37. A-scan Main part • Clock pulse repetition frequency (PRF) • Ultrasonic velocity • Depth of investigation • Number of line per image • Filter • Transmitter • Receiver • TGC+Amplifier • Radio Amp. • Video Amp. • Time generator • Processing

  38. B-scan • One dimension • Two dimension

  39. M-mode

  40. Commercial system • Mechanical • Linear • Sector • Electrical • Linear • Sector

  41. Mechanical sector scanner • Advantages • Simple • Cheap • Acceptable resolution • Disadvantage • Noise • Mechanical fracture • Reverberation • Sector field

  42. Electronic Scanners • Linear Typical values: • Number of elements 60-120 • Elements width (b) 1-4 λ • Frequency 3.5-7MHz • Length of ceramic (L) 2-11.5 cm • Scanning length (image width) 2-10 cm

  43. Sector Electronic focusing

  44. Velocity determination • Optimum frequency for doppler is f0=90/R R = soft tissue distance from target • Suitable frequency=2 MHz for deep 5-7 MHz for superficial • Doppler examination • continues wave • pulse wave

  45. C.W doppler • Need two transducer • Can not be used for range resolution • Filter • High pass filter • Low pass filter T Oscillator R RF Amp. Demodulator Audio Amp. Filter Output Device

  46. Pulse wave doppler • Use pulse • Select depth of interest

  47. Oscillator clock Transmit Gate T Instrument design of P.W doppler Range Delay RF Amp. R Length Delay Demodulator Receive Gate Samplet Hold Audio Amp. Filter Out put Device

More Related